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Introduction

Let F g
s ≡ F be the Riemann surface of genus g and s punctures.

We assume s > 0 and 2− 2g − s < 0.

Teichmüller space T (F ) has many incarnations:

I {complex structures on F}/isotopy

I {conformal structures on F}/isotopy

I {hyperbolic structures on F}/isotopy

Isotopy here stands for diffeomorphisms isotopic to identity.
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Representation-theoretic definition:

T (F ) = Hom′(π1(F ),PSL(2,R))/PSL(2,R),

where ρ ∈ Hom′ if

I ρ is injective

I identity in PSL(2,R) is not an accumulation point of the image of
ρ, i.e. ρ is discrete

I the group elements corresponding to loops around punctures are
parabolic (|tr| = 2)
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The image Γ ∈ PSL(2,R) is a Fuchsian group.

By Poincaré uniformization we have F = H+/Γ, where PSL(2,R) acts
on the hyperbolic upper-half plane H+ as oriented isometries, given by
fractional-linear transformations:

z → az + b

cz + d
.

The punctures of F̃ = H+ belong to the real line ∂H+, which is called
absolute.
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The primary object of interest in many areas of mathematics is the
moduli space:

M(F ) = T (F )/MC(F ).

The mapping class group MC(F ): a group of the homotopy classes of
orientation preserving homeomorphisms.

MC(F ) acts on T (F ) by outer automorphisms of π1(F ).

The goal is to find a system of coordinates on T (F ), so that the action
of MC(F ) is realized in the simplest possible way.
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R. Penner’s work in the 1980s: a construction of coordinates associated
to the ideal triangulation of F :

2 Penner’s coordinate-system for the Teichmüller space of a

punctured surface

Let F = Fg,n be an oriented surface of genus g with n punctures, n ≥ 1 and 2g−2+n > 0,

and Tg,n denote the Teichmüller space of hyperbolic structures on F with finite area.

Let ∆ = (c1, c2, ..., cD) be an ideal triangulation of F , where D = 6g − 6 + 3n.

6

so that one assigns one positive number λ-length for every edge.

This provides coordinates for the decorated Teichmüller space:

T̃ (F ) = Rs
+ × T (F )

• Positive parameters correspond to the ”renormalized” geodesic
lengths (λ = eδ/2)

• Rs
+-fiber provides cut-off parameter (determining the size of the

horocycle) for every puncture.
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1.2 Distance between horocycles

Let $p$ be a point of the unit circle. A horvcycle $h$ at $p$ is a Euclidean circle in $D$

tangent at $p$ to the ‘unit circle. The point $p$ is called the base point of $h$ .
Let $h_{1}$ and $h_{2}$ be horocycles based at different points $p_{1}$ and $p_{2}$ and $\gamma$ the hyper-

bolic line between $p_{1}$ and $p_{2}$ . Define

$\lambda=e^{\delta/2}$ , (1)

where $\delta$ is the signed length of the portion of the geodesic $\gamma$ intercepted between the
two horocycles $h_{1}$ and $h_{2},$ $\delta>0$ if $h_{1}$ and $h_{2}$ are disjoint and $\delta<0$ otherwise. In
this way we can assign a positive number $\lambda$ to the pair $(h_{1}, h_{2})$ .

1.3 $\lambda$-length of an ideal arc
Let $S$ be the oriented closed surface of genus $g,$ $P=\{p_{1}, \ldots,p_{n}\}$ a set of $n$ points.
An ideal arc $c$ of $(S, P)$ is a path joining two points $p_{i}$ and $p_{j}$ in $S-P$. The ideal
arc $c$ is simple if $c\cap(S-P)$ is a simple arc.

Let $\Gamma_{m}\in \mathcal{T}_{g,n}$ , then there exists an orientation preserving homeomorphism

$f:S-Parrow D/\Gamma$

inducing $m$ . Let $\gamma$ be the geodesic representative in the homotopy class of $f(c)$ for
the Poincar\’e metric of the punctured surface $D/\Gamma$ . By the identification of $\Gamma_{m}$ with
$(\Gamma_{m}, H_{1}, \ldots, H_{n})$ , the horocycles at the endpoints of $\gamma$ defines the $\lambda$-length $\lambda(c, \Gamma_{m})$ .

Let $\Delta=\{c_{1}, c_{2}, \ldots, c_{q}\},$ $q=6g-6+3n$, be an ideal triangulation of $(S, P)$ . Then

Theorem 1 (Penner [1])

$\lambda_{\Delta}=\prod_{i=1}^{q}\lambda(c_{i}):\mathcal{T}_{g_{1}n}arrow(\mathbb{R}_{+})^{q}$

is an embedding.

129

• Rs
+-fiber provides cut-off parameter (determining the size of the

horocycle) for every puncture.
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The action of MC(F ) can be described combinatorially using
elementary transformations called flips:

a b

cd

e flip

a b

cd

f

Ptolemy relation : ef = ac + bd

In order to obtain coordinates on T (F ), one has to consider shear
coordinates ze = log( ac

bd
), which are subjects to certain linear

constraints.
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Transformation of coordinates via the triangulation change is therefore
governed by Ptolemy relations. This leads to the prominent geometric
example of cluster algebra, introduced by S. Fomin and A. Zelevinsky in
the early 2000s.

Penner’s coordinates can be used for the quantization of T (F )
(L. Chekhov, V. Fock, R. Kashaev, late 90s, early 2000s).

Higher Teichmüller spaces: PSL(2,R) is replaced by some split
semisimple real Lie group G .

In the case of real reductive groups G the construction of coordinates
was given by V. Fock and A. Goncharov (2003) and sparked a lot of
applications in various areas of mathematics/mathematical physics.
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String theory: propagating closed strings generate Riemann surfaces:

Superstrings, which, according to string theory, are the fundamental
objects for the description of our world, carry extra anticommuting
parameters θi , called fermions:

θiθj = −θjθi

That can be interpreted as strings propagating along supermanifolds
called super Riemann surfaces.
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That leads to generalizations of Teichmüller spaces, relevant for string
theory, called N = 1 and N = 2 super-Teichmüller spaces ST (F ),
depending on the number of extra fermionic degrees of freedom.

The corresponding supermoduli spaces were intensively studied by
various physicists and mathematicians L. Crane, J. Rabin, E. D’Hocker,
D. Phong, A. Schwarz, A. Voronov...

Not so long ago R. Donagi and E. Witten showed that in the higher
genus supermoduli spaces are very much involved:

R. Donagi, E. Witten, Supermoduli Space Is Not Projected,
arXiv:1304.7798
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These N = 1 and N = 2 super-Teichmüller spaces in the terminology of
higher Teichmüller theory are related to supergroups

OSP(1|2), OSP(2|2)

correspondingly.

In the late 80s the problem of construction of Penner’s coordinates on
ST (F ) was introduced on Yu.I. Manin’s Moscow seminar.

The N = 1 case was solved in:
R. Penner, A. Zeitlin, arXiv:1509.06302, to appear in J. Diff. Geom.

The N = 2 case was solved in:
I. Ip, R. Penner, A. Zeitlin, Adv. Math. 336 (2018) 409-454,
arXiv:1605.08094.

Full decoration removal for N = 1:
I. Ip, R. Penner, A. Zeitlin, arXiv:1709.06207, to appear in Comm.
Math. Phys.
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i) Superspaces and supermanifolds

Let Λ(K) = Λ0(K)⊕ Λ1(K) be an exterior algebra over field K = R,C
with (in)finitely many generators 1, e1, e2,. . . , so that

a = a# +
∑
i

aiei +
∑
ij

aijei ∧ ej + . . . , # : Λ(K)→ K

a# is referred to as a body of a supernumber.

If a ∈ Λ0(K), it is called even (bosonic) number

If a ∈ Λ1(K), it is called odd (fermionic) number

Note, that odd numbers anticommute.
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Superspace K(n|m) is:

K(n|m) = {(z1, z2, . . . , zn|θ1, θ2, . . . , θm) : zi ∈ Λ0(K), θj ∈ Λ1(K)}

One can define (n|m) supermanifolds over Λ(K) based on superspaces
K(n|m), where {zi} and {θi} serve as even and odd coordinates.

Special spaces:
• Upper N = N super-half-plane (we will need N = 1, 2 ):

H+ = {(z |θ1, θ2, . . . , θN) ∈ C(1|N)| Im z# > 0}

• Positive superspace:

R(n|m)
+ = {(z1, z2, . . . , zn|θ1, θ2, . . . , θm) ∈ R(n|m)| z#

i > 0, i = 1, . . . , n}
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ii) Supergroup OSp(1|2)

Definition:

(1|2)× (1|2) supermatrices g , obeying the relation

g stJg = J,

where

J =

 0 1 0
−1 0 0

0 0 −1


and the supertranspose g st of g is given by

g =

 a b α
c d β
γ δ f

 implies g st =

 a c γ
b d δ
−α −β f

 .

We want a connected component of identity, so we assume that
Berezinian (super-analogue of determinant) = 1.
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Some remarks:

• Lie superalgebra osp(1|2):

Three even h,X± and two odd v± generators, satisfying the following
commutation relations:

[h, v±] = ±v±, [v±, v±] = ∓2X±, [v+, v−] = h.

• Note, that the body of the supergroup OSP(1|2) is SL(2,R), not
PSL(2,R)!
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OSp(1|2) acts on N = 1 super half-plane H+, with the absolute
∂H+ = R1|1 by superconformal fractional-linear transformations:

z → az + b

cz + d
+ η

γz + δ

(cz + d)2
,

η → γz + δ

cz + d
+ η

1 + 1
2
δγ

cz + d
.

Factor H+/Γ, where Γ is a discrete subgroup of OSp(1|2), such that its
projection is a Fuchsian group, are called super Riemann surfaces.
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Alternatively, super Riemann surface is a complex (1|1)-supermanifold S
with everywhere non-integrable odd distribution D ∈ TS , such that

0→ D→ TS → D
2 → 0 is exact.

There are more general fractional-linear transformations acting on H+.
They correspond to SL(1|2) supergroup, and factors H+/Γ give
(1|1)-supermanifolds which have relation to N = 2 super-Teichmüller
theory.
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iii) (N = 1) Super-Teichmüller space

From now on let

ST (F ) = Hom′(π1(F ),OSp(1|2))/OSp(1|2).

Super-Fuchsian representations comprising Hom′ are defined to be
those whose projections

π1 → OSp(1|2)→ SL(2,R)→ PSL(2,R)

are Fuchsian groups, corresponding to F .

Trivial bundle ST̃ (F ) = Rs
+ × ST (F ) is called the decorated

super-Teichmüller space.

Unlike (decorated) Teichmüller space, ST (F ) (ST̃ (F )) has 22g+s−1

connected components labeled by spin structures on F .
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iv) Ideal triangulations and trivalent fatgraphs

• Ideal triangulation of F : triangulation ∆ of F with punctures at the
vertices, so that each arc connecting punctures is not homotopic to a
point rel punctures.

• Trivalent fatgraph: trivalent graph τ with cyclic orderings on
half-edges about each vertex.

τ = τ(∆), if the folowing is true:

1) one fatgraph vertex per triangle

2) one edge of fatgraph intersects one shared edge of triangulation.
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10 1 The basics

edges incident on each vertex of G.

Definition 1.21. A fatgraph or ribbon graph is a graph together with a family of
cyclic orderings on the half edges about each vertex. The fatgraph G D G."/ and its
corresponding ideal cell decomposition " D ".G/ are said to be dual.

One can conveniently describe a fatgraph by drawing a planar projection of a graph
in three-space, where the counter-clockwise ordering in the plane of projection deter-
mines the cyclic ordering about each vertex. For example, Figure 1.5 illustrates two
different fattenings on an underlying graph with two trivalent vertices giving different
fatgraphs. The figure also indicates how one takes a regular neighborhood of the vertex
set in the plane of projection and attaches bands preserving orientations to produce a
corresponding surface with boundary from a fatgraph3. Capping off each boundary
component with a punctured disk in the natural way produces a punctured surfaceF.G/
associated with a fatgraphG, where the two surfaces F 11 and F 30 correspond to the two
fatgraphs in Figure 1.5 as indicated.

Fatgraph for F 1
1 Fatgraph for F 3

0

Figure 1.5. Two fattenings of a single graph.

Definition 1.22. Notice that the fatgraph G arises as a spine of F D F.G/, namely, a
strong deformation retract of F , and its isotopy class in F is well defined.

Definition 1.23. Notice that an arc e in an ideal triangulation " separates distinct
triangles if and only if its dual edge in G has distinct endpoints, i.e., the dual edge is
not a loop. In this case, e is one diagonal of an ideal quadrilateral complementary to
.F " ["/ [ e, and we may replace e by the other diagonal f of this quadrilateral
to produce another ideal triangulation "e D " [ ff g " feg of F as in Figure 1.6.

3 It is a fun game, sometimes called “Kirby’s game”, to traverse the boundary components directly on
the fatgraph diagram.
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v) Spin structures

Textbook definition:

Let M be an oriented n-dimensional Riemannian manifold, PSO is an
orthonormal frame bundle, associated with TM. A spin structure is a
2-fold covering map P → PSO , which restricts to Spin(n)→ SO(n) on
each fiber.

This is not really useful for us, since we want to relate it to
combinatorial geometric structures on F .
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There are several ways to describe spin structures on F :

• D. Johnson (1980):

Quadratic forms q : H1(F ,Z2)→ Z2, which are quadratic with respect
to the intersection pairing · : H1 ⊗ H1 → Z2, i.e.
q(a + b) = q(a) + q(b) + a · b if a, b ∈ H1.

• S. Natanzon:

A spin structure on a uniformized surface F = U/Γ is determined by a
lift ρ̃ : π1 → SL(2,R) of ρ : π1 → PSL2(R). Quadratic form q is
computed using the following rules: trace ρ̃(γ) > 0 if and only if
q([γ]) 6= 0, where [γ] ∈ H1 is the image of γ ∈ π1 under the mod two
Hurewicz map.
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• D. Cimasoni and N. Reshetikhin (2007):

Combinatorial description of spin structures in terms of the so-called
Kasteleyn orientations and dimer configurations on the one-skeleton of
a suitable CW decomposition of F . They derive a formula for the
quadratic form in terms of that combinatorial data.
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• We gave a substantial simplification of the combinatorial formulation
of spin structures on F (one of the main results of R. Penner, A. Zeitlin,
arXiv:1509.06302):

Equivalence classes O(τ) of all orientations on a trivalent fatgraph spine
τ ⊂ F , where the equivalence relation is generated by reversing the
orientation of each edge incident on some fixed vertex, with the added
bonus of a computable evolution under flips:

ε2 ε4

ε3ε1

generically
ε1

ε2

−ε3

ε4
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Coordinates on ST̃ (F )

Fix a surface F = F s
g as above and

I τ ⊂ F is some trivalent fatgraph spine

I ω is an orientation on the edges of τ whose class in O(τ)
determines the component C of ST̃ (F )

Then there are global affine coordinates on C :

I one even coordinate called a λ-length for each edge

I one odd coordinate called a µ-invariant for each vertex of τ ,

the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection
on the spin graph.

The above λ-lengths and µ-invariants establish a real-analytic
homeomorphism

C → R6g−6+3s|4g−4+2s
+ /Z2.
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Superflips

When all a, b, c, d are different edges of the triangulations of F ,

a b

cd

e
θ

σ

a b

cd

f

µ ν

Ptolemy transformations are as follows:

ef = (ac + bd)
(

1 +
σθ
√
χ

1 + χ

)
,

ν =
σ + θ

√
χ

√
1 + χ

, µ =
σ
√
χ− θ

√
1 + χ

.

χ = ac
bd

denotes the cross-ratio, and the evolution of spin graph follows
from the construction associated to the spin graph evolution rule.
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• These coordinates are natural in the sense that if ϕ ∈ MC(F ) has
induced action ϕ̃ on Γ̃ ∈ ST̃ (F ), then ϕ̃(Γ̃) is determined by the
orientation and coordinates on edges and vertices of ϕ(τ) induced by ϕ
from the orientation ω, the λ-lengths and µ-invariants on τ .

• There is an even 2-form on ST̃ (F ) which is invariant under super
Ptolemy transformations, namely,

ω =
∑
v

d log a ∧ d log b + d log b ∧ d log c + d log c ∧ d log a− (dθ)2,

where the sum is over all vertices v of τ where the consecutive half
edges incident on v in clockwise order have induced λ-lengths a, b, c
and θ is the µ-invariant of v .

• Coordinates on ST (F ):

Take instead of λ-lengths shear coordinates ze = log
(

ac
bd

)
for every

edge e, which are subject to linear relation: the sum of all ze adjacent
to a given vertex = 0.
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Sketch of construction via hyperbolic supergeometry

XIXth century perspective on hyperbolic (super)geometry:

OSp(1|2) acts on super-Minkowski space R2,1|2 (in the bosonic case
PSL(2,R) acts on R2,1).

If A = (x1, x2, y , φ, θ) and A′ = (x ′1, x
′
2, y
′, φ′, θ′) in R2,1|2, the pairing is:

〈A,A′〉 =
1

2
(x1x

′
2 + x ′1x2)− yy ′ + φθ′ + φ′θ.

Two surfaces of special importance for us are

I Superhyperboloid H consisting of points A ∈ R2,1|2 satisfying the
condition 〈A,A〉 = 1

I Positive super light cone L+ consisting of points B ∈ R2,1|2

satisfying 〈B,B〉 = 0,

where x#
1 , x

#
2 ≥ 0.

There is an equivariant projection from H on the N = 1 super upper
half-plane H+.
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The light cone

OSp(1|2) does not act transitively on L+:

The space of orbits is labelled by odd variable up to a sign.

We pick an orbit of the vector (1, 0, 0, 0, 0) and denote it L+
0 .

There is an equivariant projection from L+
0 to R1|1 = ∂H+.

Goal: Construction of the π1-equivariant lift for all the data from the
universal cover F̃ , associated to its triangulation to L+

0 .

Such equivariant lift gives the representation of π1 in OSp(1|2).
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Orbits of 2 and 3 points in L+
0

• There is a unique OSp(1|2)-invariant of two linearly independent
vectors A,B ∈ L+

0 , and it is given by the pairing 〈A,B〉, the square root
of which we will call λ-length.

Let ζbζeζa be a positive triple in L+
0 . Then there is g ∈ OSp(1|2),

which is unique up to composition with the fermionic reflection, and
unique even r , s, t, which have positive bodies, and odd θ so that

g · ζe = t(1, 1, 1, θ, θ), g · ζb = r(0, 1, 0, 0, 0), g · ζa = s(1, 0, 0, 0, 0).

• The moduli space of OSp(1|2)-orbits of positive triples in the light

cone is given by (a, b, e, θ) ∈ R3|1
+ /Z2, where Z2 acts by fermionic

reflection.

On the superline R1|1 the parameter θ is known as Manin invariant.
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Orbits of 4 points in L+
0 : basic calculation

Suppose points A,B,C are put in the standard position.

The 4th point D, so that two new λ- lengths are c, d .

a b

cd

e
A

B

C

D

θ

σ

Fixing the sign of θ, we fix the sign of Manin invariant σ in terms of
coordinates of D.

Important observation: if we turn the picture upside down, then

(θ, σ)→ (σ,−θ)

.
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The lift of ideal triangulation to super-Minkowski space

Denote:

I ∆ is ideal trangulation of F , ∆̃ is ideal triangulation of the
universal cover F̃

I ∆∞ (∆̃∞)-collection of ideal points of F (F̃ ).

Consider ∆ together with:

• the orientation on the fatgraph τ(∆),

coordinate system C̃(F ,∆), i.e.

• positive even coordinate for every edge

• odd coordinate for every triangle

We call coordinate vectors ~c, ~c ′ equivalent if they are identical up to
overall reflection of sign of odd coordinates.

Let C(F ,∆) ≡ C̃(F ,∆)/ ∼. This implies that

C(F ,∆) ' R6g+3s−6|4g+2s−4
+ /Z2
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Then there exists a lift for each ~c ∈ ` : ∆̃∞ → L+
0 , with the property:

for every quadrilateral ABCD, if the arrow is pointing from σ to θ then
the lift is given by the picture from the previous slide up to
post-composition with the element of OSp(1|2).

The construction of ` can be done in a recursive way:

A

B

C

D

D1 D2

D3D4

θ

σ

σ1 σ2

σ3σ4

Such lift is unique up to post-composition with OSp(1|2) group element
and it is π1-equivariant. This allows us to construct representation of π1

in OSP(1|2), based on the provided data.
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D3D4

θ

σ

σ1 σ2

σ3σ4

Such lift is unique up to post-composition with OSp(1|2) group element
and it is π1-equivariant. This allows us to construct representation of π1

in OSP(1|2), based on the provided data.
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Theorem

Fix F ,∆, τ(∆) as before. Let ω be an orientation, corresponding to a
specified spin structure s of F . Given a coordinate vector ~c ∈ C̃(F ,∆),
there exists a map called the lift,

`ω : ∆̃∞ → L+
0

which is uniquely determined up to post-composition by OSp(1|2)
under admissibility conditions discussed above, and only depends on the
equivalent classes C(F ,∆) of the coordinates.

There is a representation ρ̂ : π1 := π1(F )→ OSp(1|2), uniquely
determined up to conjugacy by an element of OSp(1|2) such that

(1) ` is π1-equivariant, i.e. ρ̂(γ)(`(a)) = `(γ(a)) for each γ ∈ π1 and
a ∈ ∆̃∞;

(2) ρ̂ is a super-Fuchsian representation, i.e. the natural projection

ρ : π1
ρ̂−→ OSp(1|2)→ SL(2,R)→ PSL(2,R)

is a Fuchsian representation for F ;

(3) the space of all lifts ρ̃ : π1
ρ̂−→ OSp(1|2)→ SL(2,R) is in one-to-one

correspondence with the spin structures s on F .
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The super-Ptolemy transformations

a b

cd

e
θ

σ

a b

cd

f

µ ν

ef = (ac + bd)
(

1 +
σθ
√
χ

1 + χ

)
,

ν =
σ + θ

√
χ

√
1 + χ

, µ =
σ
√
χ− θ

√
1 + χ

are the consequence of light cone geometry.
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The space of all such lifts `ω coincides with the decorated
super-Teichmüller space ST̃ (F ) = Rs

+ × ST (F ).

In order to remove the decoration, one can pass to shear coordinates

ze = log
(

ac
bd

)
.

It is easy to check that the 2-form

ω =
∑

∆

d log a ∧ d log b + d log b ∧ d log c + d log c ∧ d log a− (dθ)2

is invariant under the flip transformations. This is a generalization of
the formula for Weil-Petersson 2-form.
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Ramond Decoration

Further reduction of the decoration: ST̃ (F ) = R6g+3s−6|4g+2s−4
+ /Z2 is

actually an R(s|nR )
+ -decoration over physically relevant Teichmüller space.

Here nR is the number of Ramond punctures, which means that the
small contour γ surrounding the puncture is such that q[γ] = 1, i.e.
tr(ρ̃(γ) > 0.

On the level of hyperbolic geometry, the appropriate constraint is that
the monodromy group element has to be true parabolic, i.e. to be
conjugated to the parabolic element of SL(2,R) subgroup.

We formulated it in terms of invariant constraints on shear coordinates
in:

I. Ip, R. Penner, A. Zeitlin, arXiv:1709.06207, to appear in Comm.
Math. Phys.
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N = 2 super-Teichmüller theory: prerequisites

N = 2 super-Teichmüller space is related to OSP(2|2) supergroup of
rank 2.

It is more useful to work with its 3× 3 incarnation, which is isomorphic
to Ψ n SL(1|2)0, where Ψ is a certain automorphism of the Lie algebra
sl(1|2) ' osp(2|2).

SL(1|2)0 is a supergroup, consisting of supermatrices

g =

 a b α
c d β
γ δ f


such that f > 0 and their Berezinian = 1.

This group acts on the space C1|2 as superconformal franctional-linear
transformations.

As before, N = 2 super-Fuchsian groups are the ones whose projections

π1 → OSP(2|2)→ GL+(2,R)→ SL(2,R)→ PSL(2,R)

are Fuchsian.
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Note, that the pure bosonic part of SL(1|2)0 is GL+(2,R).

Therefore, the construction of coordinates requires a new notion:
R+-graph connection.

A G -graph connection on τ is the assignment he ∈ G to each oriented
edge e of τ so that hē = h−1

e if ē is the opposite orientation to e.
Two assignments {he}, {h′e} are equivalent iff there are tv ∈ G for each
vertex v of τ such that h′e = tvhet

−1
w for each oriented edge e ∈ τ with

initial point v and terminal point w .

The moduli space of flat G -connections on F is isomorphic to the space
of equivalent G -graph connections on τ .

By the way, spin structures can be identified with equivalence classes of
Z2-graph connections.
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Data on triangulation/fatgraphs:

I One positive parameter per edge of fatgraph/triangulation

I Two odd parameters per triangle

I Two spin structures: generated by reflection of signs and the
permutation of odd parameters

I R+-graph connection
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Generic Ptolemy transformations are:

a b

cd

e

θ1, θ2

σ1, σ2

a b

cd

f

µ1, µ2 ν1, ν2

ha hb

hd hc

he

h−1
e

h′a h′b

h′d h′c

hf h−1
f
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and the transformation formulas are as follows:

ef = (ac + bd)

(
1 +

h−1
e σ1θ2

2(
√
χ+
√
χ−1)

+
heσ2θ1

2(
√
χ+
√
χ−1)

)
,

µ1 =
heθ1 +

√
χσ1

D
, µ2 =

h−1
e θ2 +

√
χσ2

D
,

ν1 =
σ1 −

√
χheθ1

D
, ν2 =

σ2 −
√
χh−1

e θ2

D
,

h′a =
ha
hecθ

, h′b =
hbcθ
he

, h′c = hc
cθ
cµ
, h′d = hd

cν
cθ
, hf =

cσ
c2
θ

,

where

D :=

√
1 + χ+

√
χ

2
(h−1

e σ1θ2 + heσ2θ1),

cθ := 1 +
θ1θ2

6
.
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Fatgraphs and super-Riemann surfaces

There is a parallel construction, based on Jenkins-Strebel differentials.

How to glue a Riemann surface based on a
fatgraph with the metric data?

Jenkins-Strebel differential and the underlying fatgraph→

special covering of Riemann surfaces with double overlaps,
corresponding to the edges.

M. Kontsevich’92; M. Mulase, M. Penkava’98

In a joint work with A. Schwarz, we

I Explicitly construct deformations for the class of
(1|1)-supermanifolds ”of middle degree” with punctures as Čech
cocycles

I Get in contact with the analogue of Penner’s convex hull
construction

I Construct N=1 SRS using the dualities of
(1|1)-supermanifolds/N = 2 SRS



Super-Teichmüller
Spaces

Anton Zeitlin

Outline

Introduction

Cast of characters

Coordinates on
Super-Teichmüller
space

N = 2
Super-Teichmüller
theory

Further work

Open problems

Fatgraphs and super-Riemann surfaces

There is a parallel construction, based on Jenkins-Strebel differentials.

How to glue a Riemann surface based on a
fatgraph with the metric data?

Jenkins-Strebel differential and the underlying fatgraph→

special covering of Riemann surfaces with double overlaps,
corresponding to the edges.

M. Kontsevich’92; M. Mulase, M. Penkava’98

In a joint work with A. Schwarz, we

I Explicitly construct deformations for the class of
(1|1)-supermanifolds ”of middle degree” with punctures as Čech
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McShane-type identities, path to volumes?

The simplest McShane identity (G. McShane’92):

1

2
=
∑
γ

1

1 + e`γ

on a cusped torus, where sum is over all simple geodesics γ and `γ is
the length.

M. Mirzakhani used such types of identities to deal with the volumes of
the moduli spaces.

Y. Huang recently shown how to deal with McShane identities using
Penner’s lambda length coordinates.

Together with Y. Huang, R. Penner, we have shown that the following
generalization of McShane identity holds:

1

2
=
∑
γ

( 1

1 + e`γ
+

e
3
2
`γT

e2`γ − 1

)
where `γ is the superanalogue of geodesic length and T is a product of
µ-coordinates.
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Open problems/directions

1) Cluster superalgebras

2) Weil-Petersson-form in N = 2 case

3) Quantization of super-Teichmüller spaces

4) Analogues of Weil-Petersson volumes

5) Relation to Strebel theory

6) Quasi-abelianization to GL(1|1)/spectral network approach in the
style of Gaiotto-Moore-Neitzke



Super-Teichmüller
Spaces

Anton Zeitlin

Outline

Introduction

Cast of characters

Coordinates on
Super-Teichmüller
space

N = 2
Super-Teichmüller
theory

Further work

Open problemsThank you!


	
	Outline
	Introduction
	Cast of characters
	Coordinates on Super-Teichmüller space
	N=2 Super-Teichmüller theory
	Further work
	Open problems

