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R.P. Feynman: “I got really fascinated by these (1+1)-dimensional
models that are solved by the Bethe ansatz and how mysteriously they
jump out at you and work and you dont know why. I am trying to
understand all this better.”
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Various points of view on Bethe ansatz

I via Algebraic Bethe ansatz:

Central for the QISM.

Developed in Leningrad: late 70s-80s

I via Frenkel-Reshetikhin (qKZ) equation:

I. Frenkel, N. Reshetikhin ’92

Recently: geometrization through enumerative geometry of quiver
varieties.
A. Okounkov ’15; A. Okounkov, A. Smirnov ’16; M. Aganagic, A. Okounkov ’17;

P. Pushkar, A. Smirnov, A.Z. ’16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .’17

I via QQ-systems:

appeared first in the context of qKdV equation and ODE/IM
correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov’98; D. Masoero, A. Raimondo, D. Valeri’16; Frenkel, Hernandez ’13,’19

In this talk: geometric interpretation of QQ-systems through the
difference analogue of connections on the projective line, the
so-called (G , ~)-opers.

Based on joint work with E. Frenkel, P. Koroteev, D. Sage ’18 – ’22
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QQ-systems

Consider Lie algebra g of rank r .

Cartan matrix: {aij}i,j=1,...,r , aij = 〈α̌i , αj〉.

QQ-system:

ξ̃iQ
i
−(u)Q i

+(~u)− ξiQ i
−(~u)Q i

+(u) = Λi (u)
∏
j 6=i

[−aij∏
k=1

Q j
+(~b

k
ij u)

]
i = 1, . . . , r , bk

ij ∈ Z

{Λi (u),Q i
±(u)}i=1,...,r– polynomials, ξi , ξ̃i , ~ ∈ C×;

{Λi (z)}i=1,...,r -fixed.

Solving for {Q i
+(z)}i=1,...,r ; {Q i

−(z)}i=1,...,r -auxiliary.

If g is of ADE type :

{
bij = 1, i > j

bij = 0, i < j

Example: g = sl(2):

ξ̃Q−(u)Q+(~u)− ξQ−(~u)Q+(u) = Λ(u).
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In what context do they appear?

I Relations in the extended Grothendieck ring for finite-dimensional
representations of U~(ĝ).
V. Bazhanov, S. Lukyanov, A. Zamolodchikov ’98; E. Frenkel, D. Hernandez ’13,’19

I Bethe ansatz equations for XXX, XXZ models: Q i
± are eigenvalues

of Baxter operators.
in case ξi , ξ̃i = 1: E. Mukhin, A. Varchenko, . . .

I Relations in quantum equivariant K-theory, quantum cohomology
of quiver varieties Baxter operators are generating functions of
tautological bundles Q̂ i

+(u) =
∑n

m=0 u
mΛmVi .

P. Pushkar, A. Smirnov, A.Z.’16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. ’17

I Spectral determinant relations in ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov ’98; D. Masoero, A. Raimondo, D. Valeri ’16

I ~-connections on the projective line: (G , ~)-opers

P. Koroteev, D. Sage, E. Frenkel, A.Z. ’18; P. Koroteev, D. Sage, E. Frenkel, A.Z. ’20;

P. Koroteev, A.Z. ’21; T. Brinson, D. Sage, A.Z. ’21
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Simple patterns in representation theory

I {Vωi }i=1,...,r – fundamental representations of g.
Homomorphisms mi :

mi : Λ2Vωi → ⊗j 6=iV
⊗−aji

ωj

This is how QQ-system appears in ODE/IM correspondence
(D. Masoero, A. Raimondo, D. Valeri ’16)

I Relations between generalized minors:

Lewis Carroll identity:

det(M1
1 )det(Mk

k )− det(Mk
1 )det(M1

k ) = det(M) det(M1,k
1,k )

More generally (S. Fomin, A. Zelevinsky ’98):

∆u·ωi ,v·ωi (g)∆uwi ·ωi ,vwi ·ωi (g) − ∆uwi ·ωi ,v·ωi (g)∆u·ωi ,vwi ·ωi (g) =∏
j 6=i

[
∆u·ωj ,v·ωj (g)

]−aji
.

This is the context of (G , ~)-opers
(P. Koroteev, D. Sage, A.Z. ’18; P. Koroteev, A.Z. ’22)
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Differential limit: qq-system

[
qi

+(v)∂vq
i
−(v)− qi

−(v)∂vq
i
+(v)

]
+ ζiq

+
i (v)q−i (v) = Λi (v)

∏
j 6=i

[
qj

+(v)
]−aji

i = 1, . . . , r

for g with Cartan matrix {aji}i,j=1,...,r .

We will retell a version of a classic story between oper connections on
the projective line and Gaudin models:

E. Frenkel’03; B. Feigin, E. Frenkel, V. Toledano-Laredo ’06,

B. Feigin, E. Frenkel, L. Rybnikov ’07

One-to-one correspondence (with some nondegeneracy conditions):

Polynomial solutions to the qq-systemxy
Miura G -oper connections on P1 with regular singularities, trivial

monodromy and the double pole at infinity

T. Brinson, D. Sage, A.Z. ’21
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Miura oper connections

Miura oper connections on P1 as a differential operator:

∇v = ∂v +
r∑

i=1

ζi ω̌i −
r∑

i=1

∂v log[q+
i (v)]α̌i +

r∑
i=1

Λi (v)ei .

Here

Λi (v) =
N∏

k=1

(v − vk)〈αi ,λ̌k〉,

vk–are known as regular singularities;

qi
+(v) =

∏
k

(v − w i
k).

Z-twisted condition:

∇v = U(v)(∂v + Z)U(v)−1, Z =
r∑

i=1

ζi ω̌i

U(v) =
r∏

i=1

[qi
+(v)]α̌i

r∏
j=1

exp

[
− qi

−(v)

qi
+(v)

ei

]
. . .
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qq-system for g ↔ Lg – Gaudin model Bethe equations

Bethe equations for the Gaudin model:

N∑
i=1

〈λ̌i , αkj 〉
wj − vi

−
∑
s 6=j

〈α̌is , αkj 〉
wj − ws

= ζkj , j = 1, . . . ,m.

Commuting Gaudin Hamiltonians:
B. Feigin, E. Frenkel, V. Toledano-Laredo ’06, E. Frenkel, L. Rybnikov ’07

Hi =
∑
k 6=i

dimLg∑
a=1

x
(i)
a x

(k)
a

vi − vk
+

dimLg∑
a=1

µ(xa)x (i)
a

acting on
Vλ̌1
⊗ Vλ̌2

⊗ · · · ⊗ Vλ̌N
.

Here µ ∈ (Lg)∗ is regular semisimple.
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Elementary example: SL(2)-oper

GL(2)-oper:

I Triple: (E ,∇,L) on P1:
E -vector bundle, rank(E)=2, L-line subbundle, ∇–connection.

I Oper condition: induced map ∇̄ : L→ E/L⊗K is an isomorphism.

It is an SL(2)-oper if GL(2) can be reduced to SL(2).

Locally, second condition: s(v) ∧∇v s(v) 6= 0,
where s(v) is a section of L.
D. Gaiotto, E. Witten ’11

SL(2)-oper with regular singularities: s(v)∧∇v s(v) ∼ (v − vi )
ki near vi .

Z-twisted condition: ∇v is gauge equivalent to ∂v + Z, where

Z =

(
ζ/2 0

0 −ζ/2

)
.
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SL(2)-oper and Bethe equations

Thus the oper condition is:

s(v) ∧ (∂v + Z)s(v) = Λ(v),

where Λ(v) ∼
∏

i (v − vi )
ki , Z =

(
ζ/2 0

0 −ζ/2

)
.

Explicitly: s(v) =

(
q−(v)
q+(v)

)
, we have:

q+(v)∂vq−(v)− q−(v)∂vq+(v) + ζq+(v)q−(v) = Λ(v).

Rewriting:

∂v

[
− e−ζv

q−(v)

q+(v)

]
=

e−ζvΛ(v)

q+(v)2

and computing residues, obtain sl(2) Gaudin Bethe ansatz equations:

−ζ +
N∑

n=1

kn
vn − wi

=
∑
j 6=i

2

wj − wi
.
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SL(2) Miura oper

Introduce line bundle L̂ preserved by ∇.

Miura oper is a quadruple:

(E ,∇,L, L̂).

Choose trivialization of E so that:

ŝ(v) =

(
1
0

)
, s(v) =

(
q−(v)
q+(v)

)
These are sections, generating L̂ and L correspondingly.

Notice that L, L̂ span E except for points corresponding to Bethe roots.
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Standard form of Miura oper

Choosing upper-triangular g(v), such that g(v)s(v) =

(
0
1

)
,

g(v) =

(
q+(v) −q−(v)

0 q+(v)−1

)
we obtain Miura oper connection in the standard form:

∇v = ∂v + g(v)∂vg(v)−1 + g(v)Zg(v)−1 =

∂v +

(
ζ/2− ∂v log[q+(v)] Λ(v)

0 −ζ/2 + ∂v log[q+(v)]

)
Or, in other words, we obtained the standard for of Miura oper
connection, we have seen before:

∂v + Z− ∂v log[q+(v)]α̌ + Λ(v)e
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SL(r + 1)-opers

GL(r+1)-opers:

Triple: (E ,∇,L•), rank(E)=r+1, ∇–connection,

L•– flag of subbundles:

I ∇ : Li → Li+1 ⊗ K

I induced map ∇i : Li/Li−1 → Li+1/Li ⊗ K is an isomorphism.

If structure group reduces to SL(r + 1), the above triple gives
SL(r + 1)-opers.

Locally, oper condition can be reformulated as:

0 6= Wi (s)(v) = (s(v) ∧∇v s(v) ∧ · · · ∧ ∇i−1
v s(v))|ΛiL ,

where s(v) is a section of L1.

Regular singularities: relaxing these conditions, by adding zeroes for
Wi (s).
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SL(r + 1) Miura opers and qq-system

Oper connection with regular singularities as a matrix:

∇v = ∂v +


∗ Λ1(v) 0 . . . 0
∗ ∗ Λ2(v) 0 . . . 0
...

...
. . .

. . .
...

∗ ∗ . . . ∗ Λr (v)
∗ ∗ ∗ ∗ ∗


Miura oper: quadrupe (E ,∇,L•, L̂•).

Here ∇ preserves another flag of subbundles: L̂•:

∇u = ∂u +


∗ Λ1(v) 0 . . . 0
0 ∗ Λ2(v) 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . ∗ Λr (v)
0 0 . . . 0 ∗


qq-system: relations between various normalized minors in the
(r + 1)× (r + 1) Wronskian matrix.
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(SL(2), ~)-connection

M~ : P1 → P1, such that u → ~u.

Bundle E → P1, rank(E)=2, E~ → P1 is a pull-back bundle.

(SL(2), ~)-connection: A is a meromorphic section of

HomOP1 (E ,E~),

so that A(u) ∈ SL(2,C(u)).

~-gauge transformations:

A(u)→ g(~u)A(u)g−1(u)
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(SL(2), ~)-oper

(SL(2), ~)-oper on P1 with regular singularities is a triple (E ,A,L):

I (E ,A) is a (SL(2), ~)-connection

I L is a line subbundle so that Ā : L→ (E/L)~ is an isomorphism

Locally:
s(~u) ∧ A(u)s(u) 6= 0,

where s(u) is a section of L.

Miura (SL(2), ~)-oper: qudruple (E ,A,L, L̂):

I (E ,A,L) is (SL(2), ~)-oper

I Line subbundle L̂ is preserved by A.

Regular singularities: Λ(u) =
∏N

m=1

∏km−1

j=0 (u − ~−jum), so that:

s(~u) ∧ A(u)s(u) = Λ(u).

A Z-twisted (SL(2), ~)-oper: A is ~-gauge equivalent to Z =

(
z 0
0 z−1

)
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Miura (SL(2), ~)-oper and the QQ-system

Given that s(u) =

(
Q−(u)
Q+(u)

)
, the condition s(~u) ∧ Zs(u) = Λ(u) is

equivalent to:

zQ+(~u)Q−(u)− z−1Q−(~u)Q+(u) = Λ(u)

Bethe equations for XXZ model:

Λ(wi )

Λ(~−1wi )
= −z2 Q+(~wi )

Q+(~−1wi )

Q+(u) =
∏
j

(u − wj)
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Canonical form of Miura (SL(2), ~)-oper

Considering U(u)s(u) =

(
0
1

)
, so that L̂ is preserved, gives:

U(u) =

(
Q+(u) −Q−(u)

0 Q+(u)−1

)
which leads to:

A(u) = U(~u)ZU(u)−1 =

(
z Q+(~u)

Q+(u)
Λ(u)

0 z−1 Q+(u)
Q+(~u)

)
.

In universal terms:

A(u) = g α̌(u)e
Λ(u)
g(u)

e
, g(u) = z

Q+(~u)

Q+(u)
.

Compare to the Miura SL(2)-oper connection:

∇v = ∂v + Z− ∂v log[q+(v)]α̌ + Λ(v)e.
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0
1

)
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Q+(u) −Q−(u)

0 Q+(u)−1

)
which leads to:

A(u) = U(~u)ZU(u)−1 =

(
z Q+(~u)
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.
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Quantum groups and integrable models

Quantum group

U~(ĝ)

is a deformation of U(ĝ), with a nontrivial intertwiner RV1,V2 (a1/a2):

V1(a1)⊗ V2(a2)

V2(a2)⊗ V1(a1)

which is a rational function of a1, a2, satisfying Yang-Baxter equation:

The generators of U~(ĝ) emerge as matrix elements of R-matrices (the
so-called FRT construction).
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Transfer matrices

Source of integrability: commuting transfer matrices, generating Baxter
algebra which are weighted traces of

R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys

over auxiliary W (u) space:

TW (u) = TrW (u)

(
M(u)

)
= TrW (u)

(
(Z ⊗ 1) R̃W (u),Hphys

)

Here Z ∈ eh, where h ⊂ g is a Cartan subalgebra.
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Integrability and Baxter algebra

Integrability condition:

[TW ′(u′),TW (u)] = 0

There are special transfer matrices is called Baxter Q-operators. Such
operators generate all Bethe algebra.

Primary goal for physicists is to diagonalize {TW (u)} simultaneously.
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(G , ~)-connections on P1

I Principal G -bundle FG over P1

I M~ : P1 → P1, such that u 7→ ~u.

F~
G stands for the pullback under the map M~.

A meromorphic (G , ~)-connection on a principal G -bundle FG on P1 is a
section A of HomOU (FG ,F

~
G ), where U is a Zariski open dense subset of

P1.

Choose U so that the restriction FG |U of FG to U is isomorphic to the
trivial G -bundle.

The restriction of A to the Zariski open dense subset U ∩M~
−1(U) is

an element A(u) of G(u) ≡ G(C(u)).

Changing the trivialization is given by ~-gauge transformation:

A(u) 7→ g(~u)A(u)g(u)−1



Anton Zeitlin

Introduction

QQ-systems

Differential limit,
Miura opers and
Gaudin models

(SL(r + 1), ~)-opers
and Bethe equations

(G, ~)-opers

Applications

(G , ~)-connections on P1

I Principal G -bundle FG over P1

I M~ : P1 → P1, such that u 7→ ~u.

F~
G stands for the pullback under the map M~.

A meromorphic (G , ~)-connection on a principal G -bundle FG on P1 is a
section A of HomOU (FG ,F

~
G ), where U is a Zariski open dense subset of

P1.

Choose U so that the restriction FG |U of FG to U is isomorphic to the
trivial G -bundle.

The restriction of A to the Zariski open dense subset U ∩M~
−1(U) is

an element A(u) of G(u) ≡ G(C(u)).

Changing the trivialization is given by ~-gauge transformation:

A(u) 7→ g(~u)A(u)g(u)−1



Anton Zeitlin

Introduction

QQ-systems

Differential limit,
Miura opers and
Gaudin models

(SL(r + 1), ~)-opers
and Bethe equations

(G, ~)-opers

Applications

(G , ~)-connections on P1

I Principal G -bundle FG over P1

I M~ : P1 → P1, such that u 7→ ~u.

F~
G stands for the pullback under the map M~.

A meromorphic (G , ~)-connection on a principal G -bundle FG on P1 is a
section A of HomOU (FG ,F

~
G ), where U is a Zariski open dense subset of

P1.

Choose U so that the restriction FG |U of FG to U is isomorphic to the
trivial G -bundle.

The restriction of A to the Zariski open dense subset U ∩M~
−1(U) is

an element A(u) of G(u) ≡ G(C(u)).

Changing the trivialization is given by ~-gauge transformation:

A(u) 7→ g(~u)A(u)g(u)−1



Anton Zeitlin

Introduction

QQ-systems

Differential limit,
Miura opers and
Gaudin models

(SL(r + 1), ~)-opers
and Bethe equations

(G, ~)-opers

Applications

(G , ~)-connections on P1

I Principal G -bundle FG over P1

I M~ : P1 → P1, such that u 7→ ~u.

F~
G stands for the pullback under the map M~.

A meromorphic (G , ~)-connection on a principal G -bundle FG on P1 is a
section A of HomOU (FG ,F

~
G ), where U is a Zariski open dense subset of

P1.

Choose U so that the restriction FG |U of FG to U is isomorphic to the
trivial G -bundle.

The restriction of A to the Zariski open dense subset U ∩M~
−1(U) is

an element A(u) of G(u) ≡ G(C(u)).

Changing the trivialization is given by ~-gauge transformation:

A(u) 7→ g(~u)A(u)g(u)−1



Anton Zeitlin

Introduction

QQ-systems

Differential limit,
Miura opers and
Gaudin models

(SL(r + 1), ~)-opers
and Bethe equations

(G, ~)-opers

Applications

(G , ~)-oper connections for simple simply connected Lie groups
G

A (G , ~)-oper on P1 is a triple (FG ,A,FB−):

I FG is a G -bundle

I A is a meromorphic (G , ~)-connection on FG over P1

I FB− is the reduction of FG to B−

(G , ~)-oper condition: restriction of the connection A : FG → F~
G to

U ∩M~
−1(U) takes values in the Bruhat cell

B−(C[U ∩M~
−1(U)]) c B−(C[U ∩M~

−1(U)]),

where c is Coxeter element: c =
∏

i si .

Locally:

A(u) = n′(u)
∏
i

[
φi (u)α̌i si

]
n(u), φi (u) ∈ C(u), n(u), n′(u) ∈ N(u)

Here N = B/H, H = B/[B,B].

~-Drinfeld-Sokolov reduction: Semenov-Tian-Shansky, Sevostyanov ’98
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Miura (G , ~)-opers

A Miura (G , ~)-oper on P1 is a quadruple (FG ,A,FB− ,FB+ ):

I (FG ,A,FB−) is a meromorphic (G , ~)-oper on P1.

I FB+ is a reduction of the G -bundle FG to B+ that is preserved by
the (G , ~)-connection A.

The fiber FG ,x of FG at x is a G -torsor with reductions FB−,x and FB+,x

to B− and B+, respectively. Choose any trivialization of FG ,x , i.e. an
isomorphism of G -torsors FG ,x ' G . Under this isomorphism, FB−,x

gets identified with aB− ⊂ G and FB+,x with bB+.

Then a−1b is a well-defined element of the double quotient B−\G/B+,
which is in bijection with WG .

We will say that FB− and FB+ have a generic relative position at x ∈ X
if the element of WG assigned to them at x is equal to 1 (this means
that the corresponding element a−1b belongs to the open dense Bruhat
cell B− · B+ ⊂ G).
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Main structural theorem

Theorem.
i) For any Miura (G , ~)-oper on P1, there exists a trivialization of the
underlying G -bundle FG on an open dense subset of P1 for which the
oper ~-connection has the form:

A(u) ∈ N−(u)
∏
i

(φi (u)α̌i si )N−(u) ∩ B+(u).

ii) Any element from N−(u)
∏

i (φi (u)α̌i si )N−(u) ∩ B+(z) can be
written as: ∏

i

g α̌i
i (u)e

φi (u)ti (u)

gi (u)
ei

where each ti ∈ C(u) is determined by the lifting of si .

In the following we set ti ≡ 1.

E. Frenkel, P. Koroteev, D. Sage, A.Z. ’20
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(G , ~)-opers with regular singularities and Z-twisted opers

I (G , ~)-oper with regular singularities at finitely many points on P1:

A(u) = n′(u)
∏
i

[
Λα̌i
i (u)si

]
n(u), Λi (u) ∈ C[u].

For any Miura (G , ~)-oper with regular singularities:

A(u) =
∏
i

g α̌i
i (u)e

Λi (u)

gi (u)
ei .

I (G , ~)-oper is Z -twisted if it is gauge equivalent to Z ∈ H, namely

A(u) = v(~u)Zv−1(u), where Z =
∏
i

z α̌i
i , v(u) ∈ G(u).

We assume Z is regular semisimple. In that case there are WG Miura
opers for a given oper.

In the extreme case Z = 1 we have G/B Miura opers for a given oper.
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Nondegenerate Z-twisted Miura (G , ~)-opers and QQ-systems

Nondegeneracy conditions (see detailed discussion in our paper):

A(u) =
∏
i

g α̌i
i (u)e

Λi (u)

gi (u)
ei , gi (u) = zi

yi (~u)

yi (u)

Each yi (u) is a polynomial, and for all i , j , k with i 6= j and
aik 6= 0, ajk 6= 0, the zeros of yi (u) and yj(u) are ~-distinct from each
other and from the zeros of Λk(u).

Explicit formula for v(u), such that

A(u) = v(u~)Zv(u)−1

is:

v(u) =
r∏

i=1

yi (u)α̌i

r∏
i=1

e
−

Q
j
−(u)

Q
j
+(u)

ei
. . . ,

where the dots stand for the exponentials of higher commutator terms.
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Main theorem

That leads to the expression of Miura (G , ~)-oper connection:

A(u) =
∏
i

g α̌i
i (u)e

Λi (u)

gi (u)
ei , gi (u) = zi

Q i
+(~u)

Q i
+(u)

.

Theorem. There is a one-to-one correspondence between the set of
nondegenerate Z -twisted Miura (G , ~)-opers and the set of
nondegenerate polynomial solutions of the QQ-system:

ξ̃iQ
i
−(u)Q i

+(~u)− ξiQ i
−(~u)Q i

+(u) =

Λi (u)
∏
j>i

[
Q j

+(~u)
]−aji ∏

j<i

[
Q j

+(u)
]−aji

, i = 1, . . . , r ,

where ξ̃i = zi
∏

j>i z
aji
j , ξi = z−1

i

∏
j<i z

−aji
j .

E. Frenkel, P. Koroteev, D. Sage, A.Z. ’20

In ADE case this QQ-system correspond to the Bethe ansatz equations.
Beyond simply-laced case: “folded integrable models”.

E. Frenkel, D. Hernandez, N. Reshetikhin ’21
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Quantum Bäcklund transformations and Miura ~-opers

Originally operators

A(u) =
∏
i

g α̌i
i (u)e

Λi (u)

gi (u)
ei , gi (u) = zi

Q i
+(~u)

Q i
+(u)

,

where Q±(u) are the solution of QQ-systems, were introduced by
Mukhin, Varchenko’05 in the additive case with Z = 1.

They also introduced the following ~-gauge transformation of the
~-connection A:

A 7→ A(i) = eµi (~u)fiA(u)e−µi (u)fi , where µi (u) =

∏
j 6=i

[
Q j

+(u)
]−aji

Q i
+(u)Q i

−(u)
.

Then A(i)(u) can be obtained from A(u) by substituting in formula for
A(u):

Q j
+(u) 7→ Q j

+(u), j 6= i ,

Q i
+(u) 7→ Q i

−(u), Z 7→ si (Z) .

Altogether these transformation generate the “full” QQ-system.
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SL(r + 1) opers: explicit formula

QQ-system:

ξi+1Q
+
i (~u)Q−i (u)−ξiQ+

i (u)Q−i (~u) = Λi (u)Q+
i−1(u)Q+

i+1(~u) , i = 1, . . . , r

ξ1 =
1

z1
, ξ2 =

z1

z2
, . . . ξr =

zr−1

zr
, ξr+1 =

1

zr
,

For Z-twisted oper:
A(u) = V−1(~u)ZV (u)

V (u) =



1

Q+
1 (u)

Q−1 (u)

Q+
2 (u)

Q−12 (u)

Q+
3 (u)

. . .
Q−1,...,r−1(u)

Q+
r (u)

Q−1,...,r (u)

0
Q+

1 (u)

Q+
2 (u)

Q−2 (u)

Q+
3 (u)

. . .
Q−2,...,r−1(u)

Q+
r (u)

Q−2,...,r (u)

0 0
Q+

2 (u)

Q+
3 (u)

. . .
Q−3,...,r−1(u)

Q+
r (u)

Q−3,...,r (u)

...
...

...
. . .

...
...

0 . . . . . . . . .
Q+
r−1(u)

Q+
r (u)

Q−r (u)

0 . . . . . . . . . 0 Q+
r (u)


.
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(SL(r + 1), ~)-opers: alternative definition

A (GL(r + 1), ~)-oper on P1 is a triple (A,E ,L•), where E is a vector
bundle of rank r + 1 and L• is the corresponding complete flag of the
vector bundles,

Lr+1 ⊂ ... ⊂ Li+1 ⊂ Li ⊂ Li−1 ⊂ ... ⊂ E = L1,

where Lr+1 is a line bundle, so that A ∈ HomOP1 (E ,E~) satisfies the
following conditions:

I A · Li ⊂ Li−1,

I Āi : Li/Li+1 → Li−1/Li is an isomorphism.

An (SL(r + 1), ~)-oper is a (GL(r + 1), ~)-oper with the condition that
det(A) = 1.

Regular singularities: Āi allowed to have zeroes at zeroes of Λi (u).
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(SL(r + 1), ~)-Wronskians and QQ-systems

Minors in ~-Wronskian matrix:

Dk(s) =

e1 ∧ · · · ∧ er+1−k ∧ s(u) ∧ Z−1s(~u) ∧ · · · ∧ Z 1−ks(~k−1u) =

αkWk(u)Vk(u) ,

where

Vk(u) =

rk∏
a=1

(u − wk,a) ,

and

Wk(s) = P1 · P(1)
2 · P

(2)
3 · · ·P

(k−2)
k−1 , Pi = ΛrΛr−1 · · ·Λr−i+1

We used the notation f (j)(u) = f (~ju) above.

One can identify: Vk(u) ≡ Q+
k (u) and Q−i,...,j(u) with other minors.

The bilinear relations for the extended QQ-system are nothing but
Plücker relations for minors in the ~-Wronskian matrix.
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What about the analogue of ~-Wronskian for Miura
(G , ~)-oper?

One can construct an analogue of the ~-Wronskian matrix as a solution
of a difference equation, so that the full QQ-system emerge as relations
for generalized minors.

P. Koroteev, A.Z.’21
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Quantum-classical duality via (SL(r + 1), ~)-opers

Take section of the line bundle Lr+1 in complete flag L•:

s(u) =



s1(u)
s2(u)
s3(u)

...
sr (u)
sr+1(u)


=



Q−1,...,r (u)
Q−2,...,r (u)
Q−3,...,r (u)

...
Q−r (u)
Q+

r (u)


.

Interesting case (XXZ chain corresponding to defining representations):

I Polynomials are of degree 1

I Only Λ1(u) =
∏

i (u − ai ) is nontrival

Identification:

I roots of si (u) with momenta pi

I ξi = zi/zi−1 with coordinates
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tRS integrable system

Space of functions on Z-twisted Miura (SL(r + 1, ~)-opers

l

Space of functions on the intersection of two Lagrangian
subvarieties in trigonometric Ruijsenaars-Schneider (tRS) phase

space.

Bethe equations ↔ {Hk = fk({ai})}

Here Hk are tRS Hamiltonians

Hk =
∑

J⊂{1,...,r+1}
|J|=k

∏
i∈J
j /∈J

ξi − ~ξj
ξi − ξj

∏
m∈J

pm

and fk are elementary symmetric functions of ai .
P. Koroteev, P. Pushkar, A. Smirnov, A.Z. ’17

E. Frenkel, P. Koroteev, D. Sage, A.Z. ’20
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~-Opers for
̂̂
gl(1) and Bethe ansatz

Let us “complete” Miura (SL(r + 1), ~)-opers:

(GL(∞), ~):

A(u) =
−∞∏

i=+∞

g α̌i
i (u)e

Λi (u)

gi (u)
ei , gi (u) = zi

Q i
+(~u)

Q i
+(u)

.

Infinite-dimensional QQ-system:

ξi+1Q
+
i (~u)Q−i (u)−ξiQ+

i (u)Q−i (~u) = Λi (u)Q+
i−1(u)Q+

i+1(~u) , i = 1, . . . , r ,

where ξi = zi/zi−1.

Impose periodic condition: VA(u)V−1 = ξA(pu), where V corresponds
to automorphism of Dynkin diagram i → i + 1.

V can be actually relized as an “infinite” Coxeter element of standard
order.

That corresponds to Q±j (u) = Q±(pju), Λj(u) = ξjΛ(u), ξj = ξj :

ξQ+(~u)Q−(u)− Q+(u)Q−(~u) = Λ(u)Q+(up−1)Q+(~pu)
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I Quantum/classical duality: duality between Bethe equations and
multiparticle systems
P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality,

Comm. Math. Phys., 381 (2021) 641-672, arXiv:1811.09937

I Quantum equivariant K-theory of Nakajima quiver varieties and 3D
mirror symmetry
P. Koroteev, A.Z.,Toroidal q-Opers, to appear in Journal of the Institute of Mathematics of Jussieu, in press,

arXiv:2007.11786

P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

I Applications to ODE/IM correspondence: affine G -opers and
(G , ~)-opers
E. Frenkel, P. Koroteev, A.Z., in progress
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Happy Birthday, Igor!
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