\hbar-opers and the geometric approach to the Bethe ansatz

Anton M. Zeitlin
Louisiana State University, Department of Mathematics

Simons Center for Geometry and Physics
Stony Brook
May 31, 2022

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models and Bethe equations
(G, \hbar)-opers
Applications

Introduction

QQ-systems
Differential limit, Miura opers and
Gaudin models
$(S L(r+1), \hbar)$-opers and Bethe equations
(G, \hbar)-opers
Applications
R.P. Feynman: "I got really fascinated by these ($1+1$)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you dont know why. I am trying to understand all this better."

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz:

Central for the QISM.
Developed in Leningrad: late 70s-80s

- via Frenkel-Reshetikhin (qKZ) equation:

1. Frenkel, N. Reshetikhin ' 92

Recently: geometrization through enumerative geometry of quiver varieties.
A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;
P. Pushkar. A. Smirnov, A.Z. '16: P. Koroteev. P. Pushkar. A. Smirnov, A.Z .'17
via QQ-systems:
appeared first in the context of $q K d V$ equation and $O D E / I M$ correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G, \hbar)-opers.

Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18-'22
Introduction
QQ-systems
Differential limit, Miura opers and Gaudin models

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz:

Central for the QISM.
Developed in Leningrad: late 70s-80s

- via Frenkel-Reshetikhin (qKZ) equation:
I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.
A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;
P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .'17

- via QQ-systems:
appeared first in the context of $q K d V$ equation and ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo. D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ-systems through the
difference analogue of connections on the projective line, the so-called (G, h)-opers.
Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18-'22

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz:

Central for the QISM.
Developed in Leningrad: late $70 \mathrm{~s}-80 \mathrm{~s}$

- via Frenkel-Reshetikhin (qKZ) equation:
I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.
A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;
P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .'17

- via QQ-systems:
appeared first in the context of $q K d V$ equation and ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ-systems through the
difference analogue of connections on the projective line, the
so-called (G, \hbar)-opers.
Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18-'22

Introduction

QQ-systems

Differential limit, Miura opers and

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz: Central for the QISM.

Developed in Leningrad: late 70s-80s

- via Frenkel-Reshetikhin (qKZ) equation:
I. Frenkel, N. Reshetikhin '92

Recently: geometrization through enumerative geometry of quiver varieties.
A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;
P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .'17

- via QQ-systems:
appeared first in the context of qKdV equation and ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

In this talk: geometric interpretation of QQ -systems through the difference analogue of connections on the projective line, the so-called (G, \hbar)-opers. Based on joint work with E. Frenkel, P. Koroteev, D. Sage '18-'22

QQ-systems

Consider Lie algebra \mathfrak{g} of rank r.
Cartan matrix: $\left\{a_{i j}\right\}_{i, j=1, \ldots, r}, a_{i j}=\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle$.
QQ-system:

$$
\begin{aligned}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u) & =\Lambda_{i}(u) \prod_{j \neq i}\left[\prod_{k=1}^{-a_{i j}} Q_{+}^{j}\left(\hbar^{b_{i j}^{k}} u\right)\right] \\
i & =1, \ldots, r, \quad b_{i j}^{k} \in \mathbb{Z}
\end{aligned}
$$

$\left\{\Lambda_{i}(u), Q_{ \pm}^{i}(u)\right\}_{i=1, \ldots, r}$ polynomials, $\xi_{i}, \widetilde{\xi}_{i}, \hbar \in \mathbb{C}^{\times} ;$ $\left\{\Lambda_{i}(z)\right\}_{i=1, \ldots, r}$-fixed.

Solving for $\left\{Q_{+}^{i}(z)\right\}_{i=1, \ldots, r i}\left\{Q_{-}^{i}(z)\right\}_{i=1, \ldots, r \text {-auxiliary. }}$

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

QQ-systems

Consider Lie algebra \mathfrak{g} of rank r.
Cartan matrix: $\left\{a_{i j}\right\}_{i, j=1, \ldots, r}, a_{i j}=\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle$.
QQ-system:

$$
\begin{aligned}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u) & =\Lambda_{i}(u) \prod_{j \neq i}\left[\prod_{k=1}^{-a_{i j}} Q_{+}^{j}\left(\hbar^{b_{i j}^{k}} u\right)\right] \\
i & =1, \ldots, r, \quad b_{i j}^{k} \in \mathbb{Z}
\end{aligned}
$$

$\left\{\Lambda_{i}(u), Q_{ \pm}^{i}(u)\right\}_{i=1, \ldots, r^{-}}$polynomials, $\xi_{i}, \widetilde{\xi}_{i}, \hbar \in \mathbb{C}^{\times} ;$ $\left\{\Lambda_{i}(z)\right\}_{i=1, \ldots, r}$-fixed.

Solving for $\left.\left\{Q_{+}^{i}(z)\right\}_{i=1, \ldots, r ;} ; Q_{-}^{i}(z)\right\}_{i=1, \ldots, r}$-auxiliary.

$$
\text { If } \mathfrak{g} \text { is of ADE type : }\left\{\begin{array}{l}
b_{i j}=1, i>j \\
b_{i j}=0, i<j
\end{array}\right.
$$

Example: $\mathfrak{g}=\mathfrak{s l}(2)$:

Introduction

QQ-systems
Differential limit,

QQ-systems

Consider Lie algebra \mathfrak{g} of rank r.
Cartan matrix: $\left\{a_{i j}\right\}_{i, j=1, \ldots, r}, a_{i j}=\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle$.
QQ-system:

$$
\begin{aligned}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u) & =\Lambda_{i}(u) \prod_{j \neq i}\left[\prod_{k=1}^{-a_{i j}} Q_{+}^{j}\left(\hbar^{b_{i j}^{k}} u\right)\right] \\
i & =1, \ldots, r, \quad b_{i j}^{k} \in \mathbb{Z}
\end{aligned}
$$

Introduction

QQ-systems
Differential limit,
$\left\{\Lambda_{i}(u), Q_{ \pm}^{i}(u)\right\}_{i=1, \ldots, r^{-}}$polynomials, $\xi_{i}, \widetilde{\xi}_{i}, \hbar \in \mathbb{C}^{\times} ;$ $\left\{\Lambda_{i}(z)\right\}_{i=1, \ldots, r}$-fixed.

Solving for $\left\{Q_{+}^{i}(z)\right\}_{i=1, \ldots, r ;}\left\{Q_{-}^{i}(z)\right\}_{i=1, \ldots, r}$-auxiliary.

$$
\text { If } \mathfrak{g} \text { is of ADE type : }\left\{\begin{array}{l}
b_{i j}=1, i>j \\
b_{i j}=0, i<j
\end{array}\right.
$$

Example: $\mathfrak{g}=\mathfrak{s l}(2)$:

$$
\widetilde{\xi} Q_{-}(u) Q_{+}(\hbar u)-\xi Q_{-}(\hbar u) Q_{+}(u)=\Lambda(u)
$$

In what context do they appear?

- Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19
- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{\prime}$ are eigenvalues of Baxter operators.
- Relations in quantum equivariant K-theory, quantum cohomology of quiver varieties Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \nu_{i}$ P. Pusthkr. A. Smimrov, A.Z. '16; P. Koroteev, P. Pushkar. A. Smirnov, A.Z. ${ }^{17}$
- Spectral determinant relations in ODE/IM correspondence V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Massero. A. Raimondo, D. Valeri' 16
- \hbar-connections on the projective line: (G, \hbar)-opers
\qquad

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

- Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19
- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

- Relations in quantum equivariant K-theory, quantum cohomology of quiver varieties Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$
- Spectral determinant relations in ODE/IM correspondence V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16
$>\hbar$-connections on the projective line: (G, \hbar)-opers P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev; D. Sage, E. Frenkel, A.Z. '20;
\qquad
- Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{\hbar}(\widehat{\mathfrak{g}})$.
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19
- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.

Introduction
QQ-systems
Differential limit,
in case $\xi_{i}, \widetilde{\xi}_{i}=1$: E. Mukhin, A. Varchenko,

- Relations in quantum equivariant K-theory, quantum cohomology of quiver varieties Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$.
P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
- Spectral determinant relations in ODE/IM correspondence
- \hbar-connections on the projective line: (G, \hbar)-opers

Introduction

QQ-systems

- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.
(G. \hbar)-opers

Applications in case $\xi_{i}, \widetilde{\xi}_{i}=1:$ E. Mukhin, A. Varchenko,

- Relations in quantum equivariant K-theory, quantum cohomology of quiver varieties Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$.
P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
- Spectral determinant relations in ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri ' 16
\Rightarrow-connections on the projective line: (G, \hbar)-opers

Introduction

QQ-systems

- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.
(G \hbar)-opers
Applications in case $\xi_{i}, \widetilde{\xi}_{i}=1:$ E. Mukhin, A. Varchenko,
- Relations in quantum equivariant K-theory, quantum cohomology of quiver varieties Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$.
P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
- Spectral determinant relations in ODE/IM correspondence

V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16

- \hbar-connections on the projective line: (G, \hbar)-opers
P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20;
P. Koroteev, A.Z. '21; T. Brinson, D. Sage, A.Z. '21

Simple patterns in representation theory

- $\left\{V_{\omega_{i}}\right\}_{i=1, \ldots, r}$ - fundamental representations of \mathfrak{g}. Homomorphisms m_{i} :

$$
m_{i}: \quad \Lambda^{2} V_{\omega_{i}} \rightarrow \otimes_{j \neq i} V_{\omega_{j}}^{\otimes_{j i}}
$$

This is how $Q Q$-system appears in ODE/IM correspondence (D. Masoero, A. Raimondo, D. Valeri '16)

Introduction

QQ-systems
Differential limit,

- Relations between generalized minors:

Lewis Carroll identity:
$\operatorname{det}\left(M_{1}^{1}\right) \operatorname{det}\left(M_{k}^{k}\right)-\operatorname{det}\left(M_{1}^{k}\right) \operatorname{det}\left(M_{k}^{1}\right)=\operatorname{det}(M) \operatorname{det}\left(M_{1, k}^{1, k}\right)$ More generally (S. Fomin, A Zelevinsky '98) $\Delta_{u \cdot \omega_{i}, v \cdot \omega_{i}}(g) \Delta_{u w_{i} \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}(g)-\Delta_{u w_{i} \cdot \omega_{i}, v \cdot \omega_{i}}(g) \Delta_{u \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}(g)=$ $\prod\left[\Lambda_{u \cdot \omega_{j}, v \omega_{j}}(g)\right]$

Simple patterns in representation theory

- $\left\{V_{\omega_{i}}\right\}_{i=1, \ldots, r}$ - fundamental representations of \mathfrak{g}.

Homomorphisms m_{i} :

$$
m_{i}: \quad \Lambda^{2} V_{\omega_{i}} \rightarrow \otimes_{j \neq i} V_{\omega_{j}}^{\otimes_{j i}}
$$

This is how $Q Q$-system appears in ODE/IM correspondence (D. Masoero, A. Raimondo, D. Valeri '16)

- Relations between generalized minors:

Lewis Carroll identity:

$$
\operatorname{det}\left(M_{1}^{1}\right) \operatorname{det}\left(M_{k}^{k}\right)-\operatorname{det}\left(M_{1}^{k}\right) \operatorname{det}\left(M_{k}^{1}\right)=\operatorname{det}(M) \operatorname{det}\left(M_{1, k}^{1, k}\right)
$$

More generally (S. Fomin, A. Zelevinsky '98):

This is the context of (G, \hbar)-opers
(P. Koroteev, D. Sage, A.Z. '18; P.

Simple patterns in representation theory

- $\left\{V_{\omega_{i}}\right\}_{i=1, \ldots, r}$ - fundamental representations of \mathfrak{g}.

Homomorphisms m_{i} :

$$
m_{i}: \quad \Lambda^{2} V_{\omega_{i}} \rightarrow \otimes_{j \neq i} V_{\omega_{j}}^{\otimes_{j i}}
$$

This is how $Q Q$-system appears in ODE/IM correspondence (D. Masoero, A. Raimondo, D. Valeri '16)

- Relations between generalized minors:

Lewis Carroll identity:

$$
\operatorname{det}\left(M_{1}^{1}\right) \operatorname{det}\left(M_{k}^{k}\right)-\operatorname{det}\left(M_{1}^{k}\right) \operatorname{det}\left(M_{k}^{1}\right)=\operatorname{det}(M) \operatorname{det}\left(M_{1, k}^{1, k}\right)
$$

More generally (S. Fomin, A. Zelevinsky '98):

$$
\begin{aligned}
\Delta_{u \cdot \omega_{i}, v \cdot \omega_{i}}(g) \Delta_{u w_{i} \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}(g)- & \Delta_{u w_{i} \cdot \omega_{i}, v \cdot \omega_{i}}(g) \Delta_{u \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}(g)= \\
& \prod_{j \neq i}\left[\Delta_{u \cdot \omega_{j}, v \cdot \omega_{j}}(g)\right]^{-a_{j i}} .
\end{aligned}
$$

This is the context of (G, \hbar)-opers
(P. Koroteev, D. Sage, A.Z. '18; P. Koroteev, A.Z. '22)

Differential limit: qq-system

$$
\begin{array}{r}
{\left[q_{+}^{i}(v) \partial_{v} q_{-}^{i}(v)-q_{-}^{i}(v) \partial_{v} q_{+}^{i}(v)\right]+\zeta_{i} q_{i}^{+}(v) q_{i}^{-}(v)=\Lambda_{i}(v) \prod_{j \neq i}\left[q_{+}^{j}(v)\right]^{-a_{j i}}} \\
i=1, \ldots, r
\end{array}
$$

for \mathfrak{g} with Cartan matrix $\left\{a_{j i}\right\}_{i, j=1, \ldots, r}$.

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models
and Bethe equations
(G, \hbar)-opers
Applications

We will retell a version of a classic story between oper connections on the projective line and Gaudin models:

Frenkel'03; B. Feigin, E. Frenkel, V. Toledano-Laredo '06,
Feigin, E. Frenkel, L Rybnikov 07

One-to-one correspondence (with some nondegeneracy conditions):

Polynomial solutions to the qq-system

Miura G-oper connections on \mathbb{P}^{1} with regular singularities, trivial monodromy and the double pole at infinity

Differential limit: qq-system

$$
\begin{array}{r}
{\left[q_{+}^{i}(v) \partial_{v} q_{-}^{i}(v)-q_{-}^{i}(v) \partial_{v} q_{+}^{i}(v)\right]+\zeta_{i} \boldsymbol{q}_{i}^{+}(v) q_{i}^{-}(v)=\Lambda_{i}(v) \prod_{j \neq i}\left[q_{+}^{j}(v)\right]^{-a_{j i}}} \\
i=1, \ldots, r
\end{array}
$$

for \mathfrak{g} with Cartan matrix $\left\{a_{j i}\right\}_{i, j=1, \ldots, r}$.
We will retell a version of a classic story between oper connections on the projective line and Gaudin models:
E. Frenkel'03; B. Feigin, E. Frenkel, V. Toledano-Laredo '06,
B. Feigin, E. Frenkel, L. Rybnikov '07

One-to-one correspondence (with some nondegeneracy conditions):

Polynomial solutions to the $q q$-system

Miura G-oper connections on \mathbb{P}^{1} with regular singularities, trivial monodromy and the double pole at infinity

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

Differential limit: qq-system

$$
\begin{array}{r}
{\left[q_{+}^{i}(v) \partial_{v} q_{-}^{i}(v)-q_{-}^{i}(v) \partial_{v} q_{+}^{i}(v)\right]+\zeta_{i} q_{i}^{+}(v) q_{i}^{-}(v)=\Lambda_{i}(v) \prod_{j \neq i}\left[q_{+}^{j}(v)\right]^{-a_{j i}}} \\
i=1, \ldots, r
\end{array}
$$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

We will retell a version of a classic story between oper connections on the projective line and Gaudin models:
E. Frenkel'03; B. Feigin, E. Frenkel, V. Toledano-Laredo '06,
B. Feigin, E. Frenkel, L. Rybnikov '07

One-to-one correspondence (with some nondegeneracy conditions):
Polynomial solutions to the $q q$-system

Miura G-oper connections on \mathbb{P}^{1} with regular singularities, trivial monodromy and the double pole at infinity

Miura oper connections

Miura oper connections on \mathbb{P}^{1} as a differential operator:

$$
\nabla_{v}=\partial_{v}+\sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i}-\sum_{i=1}^{r} \partial_{v} \log \left[q_{i}^{+}(v)\right] \check{\alpha}_{i}+\sum_{i=1}^{r} \Lambda_{i}(v) e_{i}
$$

Here

$$
\Lambda_{i}(v)=\prod_{k=1}^{N}\left(v-v_{k}\right)^{\left\langle\alpha_{i}, \check{\lambda}_{k}\right\rangle}
$$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models
v_{k}-are known as regular singularities;

$$
q_{+}^{i}(v)=\prod_{k}\left(v-w_{k}^{i}\right)
$$

Z-twisted condition:

Miura oper connections

Miura oper connections on \mathbb{P}^{1} as a differential operator:

$$
\nabla_{v}=\partial_{v}+\sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i}-\sum_{i=1}^{r} \partial_{v} \log \left[q_{i}^{+}(v)\right] \check{\alpha}_{i}+\sum_{i=1}^{r} \Lambda_{i}(v) e_{i}
$$

Here

$$
\Lambda_{i}(v)=\prod_{k=1}^{N}\left(v-v_{k}\right)^{\left\langle\alpha_{i}, \check{\lambda}_{k}\right\rangle}
$$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models
v_{k}-are known as regular singularities;

$$
q_{+}^{i}(v)=\prod_{k}\left(v-w_{k}^{i}\right)
$$

z-twisted condition:

$$
\begin{aligned}
& \nabla_{v}=U(v)\left(\partial_{v}+z\right) U(v)^{-1}, \quad z=\sum_{i=1}^{r} \zeta_{i} \check{\omega}_{i} \\
& U(v)=\prod_{i=1}^{r}\left[q_{+}^{i}(v)\right]^{\check{\alpha}_{i}} \prod_{j=1}^{r} \exp \left[-\frac{q_{-}^{i}(v)}{q_{+}^{i}(v)} e_{i}\right] \ldots
\end{aligned}
$$

Miura opers and Gaudin models

Introduction

QQ-systems

qq-system for $\mathfrak{g} \quad \leftrightarrow \quad{ }^{L} \mathfrak{g}$ - Gaudin model Bethe equations
Bethe equations for the Gaudin model:

$$
\sum_{i=1}^{N} \frac{\left\langle\check{\lambda}_{i}, \alpha_{k_{j}}\right\rangle}{w_{j}-v_{i}}-\sum_{s \neq j} \frac{\left\langle\check{\alpha}_{i_{s}}, \alpha_{k_{j}}\right\rangle}{w_{j}-w_{s}}=\zeta_{k_{j}}, \quad j=1, \ldots, m
$$

Differential limit, Miura opers and Gaudin models

$(S L(r+1), \hbar)$-opers

 and Bethe equations(G, \hbar)-opers
Applications

Commuting Gaudin Hamiltonians:

acting on

Here $\mu \in\left({ }^{L} \mathfrak{g}\right)^{*}$ is regular semisimple.

Miura opers and Gaudin models

qq-system for $\mathfrak{g} \quad \leftrightarrow \quad{ }^{L} \mathfrak{g}$ - Gaudin model Bethe equations
Bethe equations for the Gaudin model:

$$
\sum_{i=1}^{N} \frac{\left\langle\check{\lambda}_{i}, \alpha_{k_{j}}\right\rangle}{w_{j}-v_{i}}-\sum_{s \neq j} \frac{\left\langle\check{\alpha}_{i_{s}}, \alpha_{k_{j}}\right\rangle}{w_{j}-w_{s}}=\zeta_{k_{j}}, \quad j=1, \ldots, m
$$

Commuting Gaudin Hamiltonians:
B. Feigin, E. Frenkel, V. Toledano-Laredo '06, E. Frenkel, L. Rybnikov '07

$$
H_{i}=\sum_{k \neq i} \sum_{a=1}^{\operatorname{dim}^{L} \mathfrak{g}} \frac{x_{a}^{(i)} x_{a}^{(k)}}{v_{i}-v_{k}}+\sum_{a=1}^{\operatorname{dim}^{L} \mathfrak{g}} \mu\left(x_{a}\right) x_{a}^{(i)}
$$

acting on

$$
V_{\check{\lambda}_{1}} \otimes V_{\check{\lambda}_{2}} \otimes \cdots \otimes V_{\check{\lambda}_{N}} .
$$

Here $\mu \in\left({ }^{L} \mathfrak{g}\right)^{*}$ is regular semisimple.

Elementary example: SL(2)-oper

GL(2)-oper:

- Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^{1} : E-vector bundle, $\operatorname{rank}(E)=2$, \mathcal{L}-line subbundle, ∇-connection.
- Oper condition: induced map $\bar{\nabla}: \mathcal{L} \rightarrow E / \mathcal{L} \otimes K$ is an isomorphism.

It is an $S L(2)$-oper if $G L(2)$ can be reduced to $S L(2)$

Locally, second condition: $s(v) \wedge \nabla_{v} s(v) \neq 0$, where $s(v)$ is a section of \mathcal{L}.
D. Giotto. E. Witten 'II
$S L(2)$-oper with regular singularities: $s(v) \wedge \nabla_{v} s(v) \sim\left(v-v_{i}\right)^{k_{i}}$ near v_{i} z-twisted condition: ∇_{v} is gauge equivalent to $\partial_{v}+z$, where

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models and Bethe equations
(G, \hbar)-opers
Applications

Elementary example: SL(2)-oper

GL(2)-oper:

- Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^{1} : E-vector bundle, $\operatorname{rank}(E)=2$, \mathcal{L}-line subbundle, ∇-connection.
- Oper condition: induced map $\bar{\nabla}: \mathcal{L} \rightarrow E / \mathcal{L} \otimes K$ is an isomorphism.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models and Bethe equations
(G, \hbar)-opers
Applications

It is an $S L(2)$-oper if $G L(2)$ can be reduced to $S L(2)$.

Locally, second condition: $s(v) \wedge \nabla_{v} s(v) \neq 0$, where $s(v)$ is a section of \mathcal{L}.
D. Gaiotto, E. Witten '11
$S L(2)$-oper with regular singularities: $s(v) \wedge \nabla_{v} s(v) \sim\left(v-v_{i}\right)^{k_{i}}$ near v_{i} z-twisted condition: ∇_{v} is gauge equivalent to $\partial_{v}+2$, where

Elementary example: SL(2)-oper

GL(2)-oper:

- Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^{1} : E-vector bundle, $\operatorname{rank}(E)=2$, \mathcal{L}-line subbundle, ∇-connection.
- Oper condition: induced map $\bar{\nabla}: \mathcal{L} \rightarrow E / \mathcal{L} \otimes K$ is an isomorphism.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

It is an $S L(2)$-oper if $G L(2)$ can be reduced to $S L(2)$.

Locally, second condition: $s(v) \wedge \nabla_{v} s(v) \neq 0$, where $s(v)$ is a section of \mathcal{L}.
D. Gaiotto, E. Witten '11
$S L(2)$-oper with regular singularities: $s(v) \wedge \nabla_{v} s(v) \sim\left(v-v_{i}\right)^{k_{i}}$ near v_{i}.
z-twisted condition: ∇_{v} is gauge equivalent to $\partial_{v}+2$, where

Elementary example: SL(2)-oper

GL(2)-oper:

- Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^{1} : E-vector bundle, $\operatorname{rank}(E)=2$, \mathcal{L}-line subbundle, ∇-connection.
- Oper condition: induced map $\bar{\nabla}: \mathcal{L} \rightarrow E / \mathcal{L} \otimes K$ is an isomorphism.

Introduction

QQ-systems

It is an $S L(2)$-oper if $G L(2)$ can be reduced to $S L(2)$.

Locally, second condition: $s(v) \wedge \nabla_{v} s(v) \neq 0$, where $s(v)$ is a section of \mathcal{L}.
D. Gaiotto, E. Witten '11
$S L(2)$-oper with regular singularities: $s(v) \wedge \nabla_{v} s(v) \sim\left(v-v_{i}\right)^{k_{i}}$ near v_{i}. z-twisted condition: ∇_{v} is gauge equivalent to $\partial_{v}+2$, where

Elementary example: SL(2)-oper

GL(2)-oper:

- Triple: (E, ∇, \mathcal{L}) on \mathbb{P}^{1} : E-vector bundle, $\operatorname{rank}(E)=2$, \mathcal{L}-line subbundle, ∇-connection.
- Oper condition: induced map $\bar{\nabla}: \mathcal{L} \rightarrow E / \mathcal{L} \otimes K$ is an isomorphism.

Introduction

QQ-systems

It is an $S L(2)$-oper if $G L(2)$ can be reduced to $S L(2)$.

Locally, second condition: $s(v) \wedge \nabla_{v} s(v) \neq 0$, where $s(v)$ is a section of \mathcal{L}.
D. Gaiotto, E. Witten '11
$S L(2)$-oper with regular singularities: $s(v) \wedge \nabla_{v} s(v) \sim\left(v-v_{i}\right)^{k_{i}}$ near v_{i}.
z-twisted condition: ∇_{v} is gauge equivalent to $\partial_{v}+z$, where

$$
z=\left(\begin{array}{cc}
\zeta / 2 & 0 \\
0 & -\zeta / 2
\end{array}\right)
$$

SL(2)-oper and Bethe equations

Thus the oper condition is:

$$
s(v) \wedge\left(\partial_{v}+Z\right) s(v)=\Lambda(v)
$$

where $\Lambda(v) \sim \prod_{i}\left(v-v_{i}\right)^{k_{i}}, \quad z=\left(\begin{array}{cc}\zeta / 2 & 0 \\ 0 & -\zeta / 2\end{array}\right)$.

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models and Bethe equations
(G, π)-opers
Applications
Explicitly: $s(v)=\binom{q_{-}(v)}{q_{+}(v)}$, we have:

$$
q_{+}(v) \partial_{v} q_{-}(v)-q_{-}(v) \partial_{v} q_{+}(v)+\zeta q_{+}(v) q_{-}(v)=\Lambda(v) .
$$

Rewriting:

and computing residues, obtain $\mathfrak{s l}(2)$ Gaudin Bethe ansatz equations:

SL(2)-oper and Bethe equations

Thus the oper condition is:

$$
s(v) \wedge\left(\partial_{v}+Z\right) s(v)=\Lambda(v)
$$

where $\Lambda(v) \sim \prod_{i}\left(v-v_{i}\right)^{k_{i}}, \quad z=\left(\begin{array}{cc}\zeta / 2 & 0 \\ 0 & -\zeta / 2\end{array}\right)$.
Explicitly: $s(v)=\binom{q_{-}(v)}{q_{+}(v)}$, we have:

$$
\boldsymbol{q}_{+}(v) \partial_{v} \boldsymbol{q}_{-}(v)-\boldsymbol{q}_{-}(v) \partial_{v} \boldsymbol{q}_{+}(v)+\zeta \boldsymbol{q}_{+}(v) \boldsymbol{q}_{-}(v)=\Lambda(v)
$$

Rewriting:

and computing residues, obtain $\mathfrak{s l}(2)$ Gaudin Bethe ansatz equations:

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

SL(2)-oper and Bethe equations

Thus the oper condition is:

$$
s(v) \wedge\left(\partial_{v}+z\right) s(v)=\Lambda(v)
$$

where $\Lambda(v) \sim \prod_{i}\left(v-v_{i}\right)^{k_{i}}, \quad z=\left(\begin{array}{cc}\zeta / 2 & 0 \\ 0 & -\zeta / 2\end{array}\right)$.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

Explicitly: $s(v)=\binom{q_{-}(v)}{q_{+}(v)}$, we have:

$$
\boldsymbol{q}_{+}(v) \partial_{v} \boldsymbol{q}_{-}(v)-\boldsymbol{q}_{-}(v) \partial_{v} \boldsymbol{q}_{+}(v)+\zeta \boldsymbol{q}_{+}(v) \boldsymbol{q}_{-}(v)=\Lambda(v)
$$

Rewriting:

$$
\partial_{v}\left[-e^{-\zeta v} \frac{q_{-}(v)}{q_{+}(v)}\right]=\frac{e^{-\zeta v} \Lambda(v)}{q_{+}(v)^{2}}
$$

and computing residues, obtain $\mathfrak{s l}(2)$ Gaudin Bethe ansatz equations:

$$
-\zeta+\sum_{n=1}^{N} \frac{k_{n}}{v_{n}-w_{i}}=\sum_{j \neq i} \frac{2}{w_{j}-w_{i}}
$$

SL(2) Miura oper

Introduce line bundle $\hat{\mathcal{L}}$ preserved by ∇.

Miura oper is a quadruple:

$$
(E, \nabla, \mathcal{L}, \hat{\mathcal{L}})
$$

Introduction

QQ-systemis

Choose trivialization of E so that:

$$
\hat{s}(v)=\binom{1}{0}, \quad s(v)=\binom{q_{-}(v)}{q_{+}(v)}
$$

These are sections, generating $\hat{\mathcal{L}}$ and \mathcal{L} correspondingly.

Notice that $\mathcal{L}, \hat{\mathcal{L}}$ span E except for points corresponding to Bethe roots.

Standard form of Miura oper

Choosing upper-triangular $g(v)$, such that $g(v) s(v)=\binom{0}{1}$,

$$
g(v)=\left(\begin{array}{cc}
q_{+}(v) & -q_{-}(v) \\
0 & q_{+}(v)^{-1}
\end{array}\right)
$$

we obtain Miura oper connection in the standard form:

$$
\begin{aligned}
& \nabla_{v}=\partial_{v}+g(v) \partial_{v} g(v)^{-1}+g(v) z g(v)^{-1}= \\
& \partial_{v}+\left(\begin{array}{cc}
\zeta / 2-\partial_{v} \log \left[q_{+}(v)\right] & \Lambda(v) \\
0 & -\zeta / 2+\partial_{v} \log \left[q_{+}(v)\right]
\end{array}\right)
\end{aligned}
$$

Or, in other words, we obtained the standard for of Miura oper connection, we have seen before:

$$
\partial_{v}+z-\partial_{v} \log \left[q_{+}(v)\right] \check{\alpha}+\Lambda(v) e
$$

$S L(r+1)$-opers

$G L(r+1)$-opers:
Triple: $\left(E, \nabla, \mathcal{L}_{\bullet}\right), \operatorname{rank}(E)=r+1, \nabla$-connection,
\mathcal{L}.- flag of subbundles:

- $\nabla: \mathcal{L}_{i} \rightarrow \mathcal{L}_{i+1} \otimes K$
- induced map $\bar{\nabla}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i-1} \rightarrow \mathcal{L}_{i+1} / \mathcal{L}_{i} \otimes K$ is an isomorphism.

If structure group reduces to $S L(r+1)$, the above triple gives $S L(r+1)$-opers.

Locally, oper condition can be reformulated as:

$$
0 \neq W_{i}(s)(v)=\left(s(v) \wedge \nabla_{v} s(v) \wedge\right.
$$

where $s(v)$ is a section of \mathcal{L}_{1}
Regular singularities: relaxing these conditions, by adding zeroes for $W_{i}(s)$.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

$S L(r+1)$-opers

$G L(r+1)$-opers:
Triple: $\left(E, \nabla, \mathcal{L}_{\bullet}\right), \operatorname{rank}(E)=r+1, \nabla$-connection,
L.- flag of subbundles:

Introduction

- $\nabla: \mathcal{L}_{i} \rightarrow \mathcal{L}_{i+1} \otimes K$
- induced map $\bar{\nabla}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i-1} \rightarrow \mathcal{L}_{i+1} / \mathcal{L}_{i} \otimes K$ is an isomorphism.

If structure group reduces to $S L(r+1)$, the above triple gives $S L(r+1)$-opers.

Locally, oper condition can be reformulated as:

$$
0 \neq W_{i}(s)(v)=\left.\left(s(v) \wedge \nabla_{v} s(v) \wedge \cdots \wedge \nabla_{v}^{i-1} s(v)\right)\right|_{\wedge^{i} \mathcal{L}}
$$

where $s(v)$ is a section of \mathcal{L}_{1}.
Regular singularities: relaxing these conditions, by adding zeroes for $W_{i}(s)$.

$S L(r+1)$ Miura opers and $q q$-system

Oper connection with regular singularities as a matrix:
$\nabla_{v}=\partial_{v}+\left(\begin{array}{ccccc}* & \Lambda_{1}(v) & 0 & \ldots & 0 \\ * & * & \Lambda_{2}(v) & 0 \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ * & * & \ldots & * & \Lambda_{r}(v) \\ * & * & * & * & *\end{array}\right)$

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

(SL ($r+1$), $\hbar)$-opers

 and Bethe equations(G, \hbar)-opers
Applications

Miura oper: quadrupe $\left(E, \nabla, \mathcal{L} \bullet, \hat{\mathcal{L}}_{\bullet}\right)$.
Here ∇ preserves another flag of subbundles: $\hat{\mathcal{L}}$.

$q q$-system: relations between various normalized minors in the $(r+1) \times(r+1)$ Wronskian matrix.

$S L(r+1)$ Miura opers and $q q$-system

Oper connection with regular singularities as a matrix:
$\nabla_{v}=\partial_{v}+\left(\begin{array}{ccccc}* & \Lambda_{1}(v) & 0 & \ldots & 0 \\ * & * & \Lambda_{2}(v) & 0 \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ * & * & \ldots & * & \Lambda_{r}(v) \\ * & * & * & * & *\end{array}\right)$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

Miura oper: quadrupe $\left(E, \nabla, \mathcal{L}, \hat{\mathcal{L}}_{\bullet}\right)$.
Here ∇ preserves another flag of subbundles: $\hat{\mathcal{L}}_{\bullet}$:
$\nabla_{u}=\partial_{u}+\left(\begin{array}{ccccc}* & \Lambda_{1}(v) & 0 & \ldots & 0 \\ 0 & * & \Lambda_{2}(v) & 0 \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & * & \Lambda_{r}(v) \\ 0 & 0 & \ldots & 0 & *\end{array}\right)$
qq-system: relations between various normalized minors in the $(r+1) \times(r+1)$ Wronskian matrix.

$S L(r+1)$ Miura opers and $q q$-system

Oper connection with regular singularities as a matrix:
$\nabla_{v}=\partial_{v}+\left(\begin{array}{ccccc}* & \Lambda_{1}(v) & 0 & \ldots & 0 \\ * & * & \Lambda_{2}(v) & 0 \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ * & * & \ldots & * & \Lambda_{r}(v) \\ * & * & * & * & *\end{array}\right)$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

Miura oper: quadrupe $\left(E, \nabla, \mathcal{L} \bullet, \hat{\mathcal{L}}_{\bullet}\right)$.
Here ∇ preserves another flag of subbundles: $\hat{\mathcal{L}}_{\bullet}$:
$\nabla_{u}=\partial_{u}+\left(\begin{array}{ccccc}* & \Lambda_{1}(v) & 0 & \ldots & 0 \\ 0 & * & \Lambda_{2}(v) & 0 \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & * & \Lambda_{r}(v) \\ 0 & 0 & \ldots & 0 & *\end{array}\right)$
$q q$-system: relations between various normalized minors in the $(r+1) \times(r+1)$ Wronskian matrix.

$(S L(2), \hbar)$-connection

$$
M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \text { such that } u \rightarrow \hbar u
$$

Bundle $E \rightarrow \mathbb{P}^{1}, \operatorname{rank}(E)=2, \quad E^{\hbar} \rightarrow \mathbb{P}^{1}$ is a pull-back bundle.
$(S L(2), \hbar)$-connection: A is a meromorphic section of

$$
\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^{1}}}\left(E, E^{\hbar}\right)
$$

so that $A(u) \in S L(2, \mathbb{C}(u))$.
\hbar-gauge transformations:

$$
A(u) \rightarrow g(\hbar u) A(u) g^{-1}(u)
$$

Introduction

QQ-systems

$(S L(2), \hbar)$-oper

$(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$
s(\hbar u) \wedge A(u) s(u) \neq 0,
$$

Introduction

QQ-systems
Differential limit, Miura opers and Gaưlin modet's
($S L(r+1), \hbar)$-opers and Bethe equations
(G, \hbar)-opers
Applications

Miura $(S L(2), \hbar)$-oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- (E, A, \mathcal{L}) is $(S L(2), \hbar)$-oper
- Line subbundle $\hat{\mathcal{L}}$ is preserved by A .

Regular singularities: $\Lambda(u)=\prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}}\left(u-\hbar^{-j} u_{m}\right)$, so that:

$$
s(\hbar u) \wedge A(u) s(u)=\Lambda(u)
$$

A Z-twisted $(S L(2), \hbar)$-oper: A is \hbar-gauge equivalent to $Z=$

$(S L(2), \hbar)$-oper

$(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$
s(\hbar u) \wedge A(u) s(u) \neq 0,
$$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models
(SL(r+1), $\hbar)$-opers and Bethe equations
where $s(u)$ is a section of \mathcal{L}.
Miura (SL(2), $\hbar)$-oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- (E, A, \mathcal{L}) is $(S L(2), \hbar)$-oper
- Line subbundle $\hat{\mathcal{L}}$ is preserved by A .

Regular singularities: $\Lambda(u)=\prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}}\left(u-\hbar^{-j} u_{m}\right)$, so that:

$$
s(\hbar u) \wedge \Delta(u) s(u)=\Lambda(u)
$$

$(S L(2), \hbar)$-oper

$(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$
s(\hbar u) \wedge A(u) s(u) \neq 0
$$

Introduction

QQ-systems
Differential limit,
Miura opers and
Gaudin models
(SL(r+1), $\hbar)$-opers and Bethe equations
where $s(u)$ is a section of \mathcal{L}.
Miura $(S L(2), \hbar)$-oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- (E, A, \mathcal{L}) is $(S L(2), \hbar)$-oper
- Line subbundle $\hat{\mathcal{L}}$ is preserved by A .

Regular singularities: $\Lambda(u)=\prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}}\left(u-\hbar^{-j} u_{m}\right)$, so that: $s(\hbar u) \wedge \Lambda(u) s(u)=\Lambda(u)$.

$(S L(2), \hbar)$-oper

$(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$
s(\hbar u) \wedge A(u) s(u) \neq 0
$$

Introduction

QQ-systems
Differential limit,
Miura opers and
Gaudin models
(SL(r+1), $\hbar)$-opers and Bethe equations
where $s(u)$ is a section of \mathcal{L}.
Miura $(S L(2), \hbar)$-oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- (E, A, \mathcal{L}) is $(S L(2), \hbar)$-oper
- Line subbundle $\hat{\mathcal{L}}$ is preserved by A .

Regular singularities: $\Lambda(u)=\prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}}\left(u-\hbar^{-j} u_{m}\right)$, so that:

$$
s(\hbar u) \wedge A(u) s(u)=\Lambda(u)
$$

A Z-twisted $(S L(2), \hbar)$-oper: A is \hbar-gauge equivalent to $Z=$

$(S L(2), \hbar)$-oper

$(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{\hbar}$ is an isomorphism

Locally:

$$
s(\hbar u) \wedge A(u) s(u) \neq 0
$$

Introduction

QQ-systems
Differential limit,
Miura opers and
Gaudin models
(SL(r+1), $\hbar)$-opers and Bethe equations
where $s(u)$ is a section of \mathcal{L}.
Miura $(S L(2), \hbar)$-oper: qudruple $(E, A, \mathcal{L}, \hat{\mathcal{L}})$:

- (E, A, \mathcal{L}) is $(S L(2), \hbar)$-oper
- Line subbundle $\hat{\mathcal{L}}$ is preserved by A .

Regular singularities: $\Lambda(u)=\prod_{m=1}^{N} \prod_{j=0}^{k_{m-1}}\left(u-\hbar^{-j} u_{m}\right)$, so that:

$$
s(\hbar u) \wedge A(u) s(u)=\Lambda(u)
$$

A Z-twisted $(S L(2), \hbar)$-oper: A is \hbar-gauge equivalent to $Z=\left(\begin{array}{cc}z & 0 \\ 0 & z^{-1}\end{array}\right)$

Miura $(S L(2), \hbar)$-oper and the QQ-system

Introduction

QQ-systems

Given that $s(u)=\binom{Q_{-}(u)}{Q_{+}(u)}$, the condition $s(\hbar u) \wedge Z s(u)=\Lambda(u)$ is equivalent to:

$$
z Q_{+}(\hbar u) Q_{-}(u)-z^{-1} Q_{-}(\hbar u) Q_{+}(u)=\Lambda(u)
$$

Bethe equations for XXZ model:

$$
\begin{aligned}
\frac{\Lambda\left(w_{i}\right)}{\Lambda\left(\hbar^{-1} w_{i}\right)} & =-z^{2} \frac{Q_{+}\left(\hbar w_{i}\right)}{Q_{+}\left(\hbar^{-1} w_{i}\right)} \\
Q_{+}(u) & =\prod\left(u-w_{j}\right)
\end{aligned}
$$

Canonical form of Miura (SL(2), $\hbar)$-oper

Considering $U(u) s(u)=\binom{0}{1}$, so that $\hat{\mathcal{L}}$ is preserved, gives:

$$
U(u)=\left(\begin{array}{cc}
Q_{+}(u) & -Q_{-}(u) \\
0 & Q_{+}(u)^{-1}
\end{array}\right)
$$

which leads to:

$$
A(u)=U(\hbar u) Z U(u)^{-1}=\left(\begin{array}{cc}
z \frac{Q_{+}(\hbar u)}{Q_{+}(u)} & \Lambda(u) \\
0 & z^{-1} \frac{Q_{+}(u)}{Q_{+}(\hbar u)}
\end{array}\right) .
$$

In universal terms:

$$
A(u)=g^{\check{\alpha}}(u) e^{\frac{\Lambda(u)}{\overline{(u)}} e}, \quad g(u)=z \frac{Q_{+}(\hbar u)}{Q_{+}(u)} .
$$

Compare to the Miura SL(2)-oper connection:

Considering $U(u) s(u)=\binom{0}{1}$, so that $\hat{\mathcal{L}}$ is preserved, gives:

$$
U(u)=\left(\begin{array}{cc}
Q_{+}(u) & -Q_{-}(u) \\
0 & Q_{+}(u)^{-1}
\end{array}\right)
$$

which leads to:

$$
A(u)=U(\hbar u) Z U(u)^{-1}=\left(\begin{array}{cc}
z \frac{Q_{+}(\hbar u)}{Q_{+}(u)} & \Lambda(u) \\
0 & z^{-1} \frac{Q_{+}(u)}{Q_{+}(\hbar u)}
\end{array}\right) .
$$

In universal terms:

$$
A(u)=g^{\check{\alpha}}(u) e^{\frac{\Lambda(u)}{g(u)} e}, \quad g(u)=z \frac{Q_{+}(\hbar u)}{Q_{+}(u)} .
$$

Compare to the Miura SL(2)-oper connection:

$$
\nabla_{v}=\partial_{v}+z-\partial_{v} \log \left[q_{+}(v)\right] \check{\alpha}+\Lambda(v) e .
$$

Quantum groups and integrable models

Quantum group

$$
U_{\hbar}(\hat{\mathfrak{g}})
$$

is a deformation of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right)$:

$$
\begin{aligned}
& V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \\
& V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
\end{aligned}
$$

Introduction

QQ-systems

which is a rational function of a_{1}, a_{2}, satisfying Yang-Baxter equation:

The generators of $U_{\hbar}(\hat{\mathfrak{g}})$ emerge as matrix elements of R-matrices (the so-called FRT construction).

Transfer matrices

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models
($S L(r+1), \hbar)$-opers and Bethe equations

$$
T_{W(u)}=\operatorname{Tr}_{W(u)}(M(u))=\operatorname{Tr}_{W(u)}\left((Z \otimes 1) \tilde{R}_{W(u), r_{p h y s}}\right)
$$

Here $Z \in e^{\mathfrak{h}}$, where $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra.

Integrability and Baxter algebra

Introduction

QQ-systems

Differential limit,

$$
\left[T_{w^{\prime}\left(u^{\prime}\right)}, T_{w(u)}\right]=0
$$

There are special transfer matrices is called Baxter Q-operators. Such operators generate all Bethe algebra.

Primary goal for physicists is to diagonalize $\left\{T_{W(u)}\right\}$ simultaneously.

(G, \hbar)-connections on \mathbb{P}^{1}

- Principal G-bundle \mathcal{F}_{G} over \mathbb{P}^{1}
- $M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, such that $u \mapsto \hbar u$.
\mathcal{F}_{G}^{\hbar} stands for the pullback under the map M_{\hbar}.

A meromorphic (G, \hbar)-connection on a principal G-bundle \mathcal{F}_{G} on \mathbb{P}^{1} is a section A of $\operatorname{Hom}_{\mathcal{O}_{U}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$, where U is a Zariski open dense subset of \mathbb{P}^{1}.

Choose U so that the restriction $\mathcal{F}_{G} \mid U$ of \mathcal{F}_{G} to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}{ }^{-1}(U)$ is an element $A(u)$ of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar-gauge transformation:

$$
A(u) \mapsto g(\hbar u) A(u) g(u)^{-1}
$$

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

(G, \hbar)-connections on \mathbb{P}^{1}

- Principal G-bundle \mathcal{F}_{G} over \mathbb{P}^{1}
- $M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, such that $u \mapsto \hbar u$.
\mathcal{F}_{G}^{\hbar} stands for the pullback under the map M_{\hbar}.

A meromorphic (G, \hbar)-connection on a principal G-bundle \mathcal{F}_{G} on \mathbb{P}^{1} is a section A of $\operatorname{Hom}_{\mathcal{O}_{U}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$, where U is a Zariski open dense subset of \mathbb{P}^{1}.

Choose U so that the restriction $\mathcal{F}_{G} \mid U$ of \mathcal{F}_{G} to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{n}{ }^{-1}(U)$ is an element $A(u)$ of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar-gauge transformation:

Introduction

QQ-systems
Differential limit, Miura opers and

(G, \hbar)-connections on \mathbb{P}^{1}

- Principal G-bundle \mathcal{F}_{G} over \mathbb{P}^{1}
- $M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, such that $u \mapsto \hbar u$.
\mathcal{F}_{G}^{\hbar} stands for the pullback under the map M_{\hbar}.

A meromorphic (G, \hbar)-connection on a principal G-bundle \mathcal{F}_{G} on \mathbb{P}^{1} is a section A of $\operatorname{Hom}_{\mathcal{O}_{U}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$, where U is a Zariski open dense subset of \mathbb{P}^{1}.

Choose U so that the restriction $\mathcal{F}_{G} \mid U$ of \mathcal{F}_{G} to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}{ }^{-1}(U)$ is an element $A(u)$ of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar-gauge transformation:

Introduction

QQ-systems
Differential limit,

(G, \hbar)-connections on \mathbb{P}^{1}

- Principal G-bundle \mathcal{F}_{G} over \mathbb{P}^{1}
- $M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, such that $u \mapsto \hbar u$.
\mathcal{F}_{G}^{\hbar} stands for the pullback under the map M_{\hbar}.

A meromorphic (G, \hbar)-connection on a principal G-bundle \mathcal{F}_{G} on \mathbb{P}^{1} is a section A of $\operatorname{Hom}_{\mathcal{O}_{U}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$, where U is a Zariski open dense subset of \mathbb{P}^{1}.

Choose U so that the restriction $\mathcal{F}_{G} \mid U$ of \mathcal{F}_{G} to U is isomorphic to the trivial G-bundle.

The restriction of A to the Zariski open dense subset $U \cap M_{\hbar}{ }^{-1}(U)$ is an element $A(u)$ of $G(u) \equiv G(\mathbb{C}(u))$.

Changing the trivialization is given by \hbar-gauge transformation:

$$
A(u) \mapsto g(\hbar u) A(u) g(u)^{-1}
$$

Introduction

Introduction

QQ-systems
Differential limit,
(G, \hbar)-oper condition: restriction of the connection $A: \mathcal{F}_{G} \rightarrow \mathcal{F}_{G}^{\hbar}$ to $U \cap M_{\hbar}{ }^{-1}(U)$ takes values in the Bruhat cell

$$
B\left(\mathbb{C}\left[U \cap M_{h}^{-1}(U)\right]\right) \subset B_{-}\left(\mathbb{C}\left[U \cap M_{h}^{-1}(U)\right]\right)
$$

where c is Coxeter element: $c=\prod_{i} s_{i}$
Locally:
$A(u)=n^{\prime}(u) \prod\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N(u)$

Here $N=B / H, H=B /[B, B]$.
\hbar-Drinfeld-Sokolov reduction: Semenov-Tian-Shansky, Sevostyanov '98 G

A (G, \hbar)-oper on \mathbb{P}^{1} is a triple $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}\right)$:

- \mathcal{F}_{G} is a G-bundle
- A is a meromorphic (G, \hbar)-connection on \mathcal{F}_{G} over \mathbb{P}^{1}
- $\mathcal{F}_{B_{-}}$is the reduction of \mathcal{F}_{G} to B_{-}
(G, \hbar)-oper condition: restriction of the connection $A: \mathcal{F}_{G} \rightarrow \mathcal{F}_{G}^{\hbar}$ to $U \cap M_{\hbar}{ }^{-1}(U)$ takes values in the Bruhat cell

$$
B_{-}\left(\mathbb{C}\left[U \cap M_{\hbar}^{-1}(U)\right]\right) \subset B_{-}\left(\mathbb{C}\left[U \cap M_{\hbar}^{-1}(U)\right]\right)
$$

where c is Coxeter element: $c=\prod_{i} s_{i}$.
Locally:

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N(u)
$$

Here $N=B / H, H=B /[B, B]$. G

A (G, \hbar)-oper on \mathbb{P}^{1} is a triple $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}\right)$:

- \mathcal{F}_{G} is a G-bundle
- A is a meromorphic (G, \hbar)-connection on \mathcal{F}_{G} over \mathbb{P}^{1}
- $\mathcal{F}_{B_{-}}$is the reduction of \mathcal{F}_{G} to B_{-}
(G, \hbar)-oper condition: restriction of the connection $A: \mathcal{F}_{G} \rightarrow \mathcal{F}_{G}^{\hbar}$ to $U \cap M_{\hbar}{ }^{-1}(U)$ takes values in the Bruhat cell

$$
B_{-}\left(\mathbb{C}\left[U \cap M_{\hbar}^{-1}(U)\right]\right) \subset B_{-}\left(\mathbb{C}\left[U \cap M_{\hbar}^{-1}(U)\right]\right)
$$

where c is Coxeter element: $c=\prod_{i} s_{i}$.
Locally:

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N(u)
$$

Here $N=B / H, H=B /[B, B]$.
\hbar-Drinfeld-Sokolov reduction: Semenov-Tian-Shansky, Sevostyanov '98

Miura (G, \hbar)-opers

A Miura (G, \hbar)-oper on \mathbb{P}^{1} is a quadruple $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}, \mathcal{F}_{B_{+}}\right)$:

- $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}\right)$is a meromorphic (G, \hbar)-oper on \mathbb{P}^{1}.
- $\mathcal{F}_{B_{+}}$is a reduction of the G-bundle \mathcal{F}_{G} to B_{+}that is preserved by the (G, \hbar)-connection A.

The fiber $\mathcal{F}_{G, x}$ of \mathcal{F}_{G} at x is a G-torsor with reductions $\mathcal{F}_{B_{-}, x}$ and $\mathcal{F}_{B_{+}, x}$ to B_{-}and B_{+}, respectively. Choose any trivialization of $\mathcal{F}_{G, x}$, i.e. an isomorphism of G-torsors $\mathcal{F}_{G, x} \simeq G$. Under this isomorphism, $\mathcal{F}_{B_{-}, x}$ gets identified with $a B_{-} \subset G$ and $\mathcal{F}_{B_{+}, x}$ with $b B_{+}$.

Then $a^{-1} b$ is a well-defined element of the double quotient $B_{-} \backslash G / B_{+}$, which is in bijection with W_{G}.

We will say that $\mathcal{F}_{B_{-}}$and $\mathcal{F}_{B_{+}}$have a generic relative position at $x \in X$ if the element of W_{G} assigned to them at x is equal to 1 (this means that the corresponding element $a^{-1} b$ belongs to the open dense Bruhat cell $\left.B_{-} \cdot B_{+} \subset G\right)$.

Introduction

QQ-systems

Differential limit,

Main structural theorem

Introduction

QQ-systems
Theorem.
i) For any Miura (G, \hbar)-oper on \mathbb{P}^{1}, there exists a trivialization of the underlying G-bundle \mathcal{F}_{G} on an open dense subset of \mathbb{P}^{1} for which the oper \hbar-connection has the form:

$$
A(u) \in N_{-}(u) \prod_{i}\left(\phi_{i}(u)^{\check{c}_{i}} s_{i}\right) N_{-}(u) \cap B_{+}(u) .
$$

ii) Any element from $N_{-}(u) \prod_{i}\left(\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right) N_{-}(u) \cap B_{+}(z)$ can be written as:

$$
\prod g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\phi_{i}(u) t_{i}(u)}{g_{i}(u)} e_{i}}
$$

where each $t_{i} \in \mathbb{C}(u)$ is determined by the lifting of s_{i}.
In the following we set $t_{i}=1$.
E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

Main structural theorem

Theorem.

i) For any Miura (G, \hbar)-oper on \mathbb{P}^{1}, there exists a trivialization of the underlying G-bundle \mathcal{F}_{G} on an open dense subset of \mathbb{P}^{1} for which the oper \hbar-connection has the form:

$$
A(u) \in N_{-}(u) \prod_{i}\left(\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right) N_{-}(u) \cap B_{+}(u) .
$$

ii) Any element from $N_{-}(u) \prod_{i}\left(\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right) N_{-}(u) \cap B_{+}(z)$ can be written as:

$$
\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\phi_{i}(u) t_{i}(u)}{g_{i}(u)} e_{i}}
$$

where each $t_{i} \in \mathbb{C}(u)$ is determined by the lifting of s_{i}.
In the following we set $t_{i} \equiv 1$.
E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

- (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^{1} :

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\Lambda_{i}^{\check{\alpha}_{i}}(u) s_{i}\right] n(u), \Lambda_{i}(u) \in \mathbb{C}[u] .
$$

For any Miura (G, \hbar)-oper with regular singularities:

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}
$$

- (G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely $A^{\prime}(u)=V^{\prime}(\hbar u) Z V^{-1}(u)$, where $Z=\prod z_{i}, v^{\prime}(u) \in G(u)$

We assume Z is regular semisimple. In that case there are W_{G} Miura opers for a given oper.

In the extreme case $Z=1$ we have G / B Miura opers for a given oper.

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

- (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^{1} :

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\Lambda_{i}^{\check{\alpha}_{i}}(u) s_{i}\right] n(u), \Lambda_{i}(u) \in \mathbb{C}[u]
$$

For any Miura (G, \hbar)-oper with regular singularities:

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}
$$

- (G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(\hbar u) Z v^{-1}(u), \text { where } Z=\prod_{i} z_{i}^{\check{\alpha}_{i}}, v(u) \in G(u) .
$$

We assume Z is regular semisimple. In that case there are W_{G} Miura opers for a given oper.

In the extreme case $Z=1$ we have G / B Miura opers for a given oper.

- (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^{1} :

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\Lambda_{i}^{\check{\alpha}_{i}}(u) s_{i}\right] n(u), \Lambda_{i}(u) \in \mathbb{C}[u]
$$

For any Miura (G, \hbar)-oper with regular singularities:

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}
$$

- (G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(\hbar u) Z v^{-1}(u), \text { where } Z=\prod_{i} z_{i}^{\check{\alpha}_{i}}, v(u) \in G(u) .
$$

We assume Z is regular semisimple. In that case there are W_{G} Miura opers for a given oper.

In the extreme case $Z=1$ we have G / B Miura opers for a given oper.

Nondegenerate Z-twisted Miura (G, \hbar)-opers and QQ-systems

Nondegeneracy conditions (see detailed discussion in our paper):

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{y_{i}(\hbar u)}{y_{i}(u)}
$$

Each $y_{i}(u)$ is a polynomial, and for all i, j, k with $i \neq j$ and $a_{i k} \neq 0, a_{j k} \neq 0$, the zeros of $y_{i}(u)$ and $y_{j}(u)$ are \hbar-distinct from each other and from the zeros of $\Lambda_{k}(u)$.

Explicit formula for $v(u)$, such that

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models

Nondegenerate Z-twisted Miura (G, \hbar)-opers and QQ-systems

Nondegeneracy conditions (see detailed discussion in our paper):

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{y_{i}(\hbar u)}{y_{i}(u)}
$$

Each $y_{i}(u)$ is a polynomial, and for all i, j, k with $i \neq j$ and $a_{i k} \neq 0, a_{j k} \neq 0$, the zeros of $y_{i}(u)$ and $y_{j}(u)$ are \hbar-distinct from each other and from the zeros of $\Lambda_{k}(u)$.

Explicit formula for $v(u)$, such that

$$
A(u)=v(u \hbar) Z v(u)^{-1}
$$

is:

$$
v(u)=\prod_{i=1}^{r} y_{i}(u)^{\check{\alpha}_{i}} \prod_{i=1}^{r} e^{-\frac{Q_{-}^{j}(u)}{Q_{+}^{j}(u)} e_{i}} \ldots
$$

where the dots stand for the exponentials of higher commutator terms.

Main theorem

That leads to the expression of Miura (G, \hbar)-oper connection:

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{Q_{+}^{i}(\hbar u)}{Q_{+}^{i}(u)}
$$

Theorem. There is a one-to-one correspondence between the set of nondegenerate Z-twisted Miura (G, \hbar)-opers and the set of nondegenerate polynomial solutions of the $Q Q$-system:

$$
\begin{aligned}
& \widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u)= \\
& \Lambda_{i}(u) \prod_{j>i}\left[Q_{+}^{j}(\hbar u)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}, \quad i=1, \ldots, r
\end{aligned}
$$

where $\widetilde{\xi}_{i}=z_{i} \prod_{j>i} z_{j}^{a_{j i}}, \xi_{i}=z_{i}^{-1} \prod_{j<i} z_{j}^{-a_{j i}}$.
E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

In ADE case this QQ-system correspond to the Bethe ansatz equations. Beyond simply-laced case: "folded integrable models".

Quantum Bäcklund transformations and Miura \hbar-opers

Originally operators

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{Q_{+}^{i}(\hbar u)}{Q_{+}^{i}(u)},
$$

where $Q_{ \pm}(u)$ are the solution of $Q Q$-systems, were introduced by Mukhin, Varchenko'05 in the additive case with $Z=1$.

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

Quantum Bäcklund transformations and Miura \hbar-opers

Originally operators

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{Q_{+}^{i}(\hbar u)}{Q_{+}^{i}(u)}
$$

where $Q_{ \pm}(u)$ are the solution of $Q Q$-systems, were introduced by Mukhin, Varchenko'05 in the additive case with $Z=1$.

They also introduced the following \hbar-gauge transformation of the \hbar-connection A :

$$
A \mapsto A^{(i)}=e^{\mu_{i}(\hbar u) f_{i}} A(u) e^{-\mu_{i}(u) f_{i}}, \quad \text { where } \quad \mu_{i}(u)=\frac{\prod_{j \neq i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}}{Q_{+}^{i}(u) Q_{-}^{i}(u)} .
$$

Then $A^{(i)}(u)$ can be obtained from $A(u)$ by substituting in formula for A(u):

$$
\begin{aligned}
Q_{+}^{j}(u) \mapsto Q_{+}^{j}(u), & j \neq i, \\
Q_{+}^{i}(u) \mapsto Q_{-}^{i}(u), & Z \mapsto s_{i}(Z)
\end{aligned}
$$

Altogether these transformation generate the "full" QQ-system.

$S L(r+1)$ opers: explicit formula

QQ-system:

$$
\begin{gathered}
\xi_{i+1} Q_{i}^{+}(\hbar u) Q_{i}^{-}(u)-\xi_{i} Q_{i}^{+}(u) Q_{i}^{-}(\hbar u)=\Lambda_{i}(u) Q_{i-1}^{+}(u) Q_{i+1}^{+}(\hbar u), i=1, \ldots, r \\
\xi_{1}=\frac{1}{z_{1}}, \quad \xi_{2}=\frac{z_{1}}{z_{2}}, \quad \ldots \quad \xi_{r}=\frac{z_{r-1}}{z_{r}}, \quad \xi_{r+1}=\frac{1}{z_{r}},
\end{gathered}
$$

For Z-twisted oper:

$$
A(u)=V^{-1}(\hbar u) Z V(u)
$$

Introduction

QQ-systems

Differential limit,

$$
V(u)=\left(\begin{array}{cccccc}
\frac{1}{Q_{1}^{+}(u)} & \frac{Q_{1}^{-}(u)}{Q_{2}^{+}(u)} & \frac{Q_{12}^{-}(u)}{Q_{3}^{+}(u)} & \ldots & \frac{Q_{1, \ldots, r-1}^{-}(u)}{Q_{r}^{+}(u)} & Q_{1, \ldots, r}^{-}(u) \\
0 & \frac{Q_{1}^{+}(u)}{Q_{2}^{+}(u)} & \frac{Q_{2}^{-}(u)}{Q_{3}^{+}(u)} & \ldots & \frac{Q_{2, \ldots, r-1}^{-}(u)}{Q_{r}^{+}(u)} & Q_{2, \ldots, r}^{-}(u) \\
0 & 0 & \frac{Q_{2}^{+}(u)}{Q_{3}^{+}(u)} & \ldots & \frac{Q_{3, \ldots, r-1}^{-}(u)}{Q_{r}^{+}(u)} & Q_{3, \ldots, r}^{-}(u) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & \ldots & \ldots & \frac{Q_{r-1}^{+}(u)}{Q_{r}^{+}(u)} & Q_{r}^{-}(u) \\
0 & \ldots & \ldots & \ldots & 0 & Q_{r}^{+}(u)
\end{array}\right)
$$

$(S L(r+1), \hbar)$-opers: alternative definition

Introduction

where \mathcal{L}_{r+1} is a line bundle, so that $A \in \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}}}\left(E, E^{\hbar}\right)$ satisfies the following conditions:

- $A \cdot \mathcal{L}_{i} \subset \mathcal{L}_{i-1}$,
- $\bar{A}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i+1} \rightarrow \mathcal{L}_{i-1} / \mathcal{L}_{i}$ is an isomorphism.

An $(S L(r+1), \hbar)$-oper is a $(G L(r+1), \hbar)$-oper with the condition that $\operatorname{det}(A)=1$.

Regular singularities: \bar{A}_{i} allowed to have zeroes at zeroes of $\Lambda_{i}(u)$.

$(S L(r+1), \hbar)$-Wronskians and QQ-systems

Minors in \hbar-Wronskian matrix:

$$
\begin{aligned}
& \mathcal{D}_{k}(s)= \\
& e_{1} \wedge \cdots \wedge e_{r+1-k} \wedge s(u) \wedge Z^{-1} s(\hbar u) \wedge \cdots \wedge Z^{1-k} s\left(\hbar^{k-1} u\right)= \\
& \alpha_{k} W_{k}(u) \mathcal{V}_{k}(u)
\end{aligned}
$$

where

$$
V_{k}(u)=\prod_{a=1}^{r_{k}}\left(u-w_{k, a}\right)
$$

and

$$
W_{k}(s)=P_{1} \cdot P_{2}^{(1)} \cdot P_{3}^{(2)} \cdots P_{k-1}^{(k-2)}, \quad P_{i}=\Lambda_{r} \Lambda_{r-1} \cdots \Lambda_{r-i+1}
$$

We used the notation $f^{(j)}(u)=f\left(\hbar^{j} u\right)$ above.
One can identify: $\mathcal{V}_{k}(u) \equiv Q_{k}^{+}(u)$ and $Q_{i, \ldots ., j}^{-}(u)$ with other minors.
The bilinear relations for the extended $Q Q$-system are nothing but Plücker relations for minors in the \hbar-Wronskian matrix.

Introduction

QQ-systems

Differential limit,

$(S L(r+1), \hbar)$-Wronskians and QQ-systems

Minors in \hbar-Wronskian matrix:

$$
\begin{aligned}
& \mathcal{D}_{k}(s)= \\
& e_{1} \wedge \cdots \wedge e_{r+1-k} \wedge s(u) \wedge Z^{-1} s(\hbar u) \wedge \cdots \wedge Z^{1-k} s\left(\hbar^{k-1} u\right)= \\
& \alpha_{k} W_{k}(u) \mathcal{V}_{k}(u)
\end{aligned}
$$

Introduction

where

$$
\mathcal{V}_{k}(u)=\prod_{a=1}^{r_{k}}\left(u-w_{k, a}\right)
$$

and

$$
W_{k}(s)=P_{1} \cdot P_{2}^{(1)} \cdot P_{3}^{(2)} \cdots P_{k-1}^{(k-2)}, \quad P_{i}=\Lambda_{r} \Lambda_{r-1} \cdots \Lambda_{r-i+1}
$$

We used the notation $f^{(j)}(u)=f\left(\hbar^{j} u\right)$ above.
One can identify: $\mathcal{V}_{k}(u) \equiv Q_{k}^{+}(u)$ and $Q_{i, \ldots, j}^{-}(u)$ with other minors.
The bilinear relations for the extended $Q Q$-system are nothing but Plücker relations for minors in the \hbar-Wronskian matrix.

What about the analogue of \hbar-Wronskian for Miura

 (G, \hbar)-oper?Introduction
QQ-systems
Differential limit, Miura opers and Gaudin models

One can construct an analogue of the \hbar-Wronskian matrix as a solution of a difference equation, so that the full $Q Q$-system emerge as relations for generalized minors.
P. Koroteev, A.Z.'21

Quantum-classical duality via $(S L(r+1), \hbar)$-opers

Introduction

QQ-systems

Interesting case (XXZ chain corresponding to defining representations):

- Polynomials are of degree 1
- Only $\Lambda_{1}(u)=\prod_{i}\left(u-a_{i}\right)$ is nontrival

Identification:

- roots of $s_{i}(u)$ with momenta p_{i}
- $\xi_{i}=z_{i} / z_{i-1}$ with coordinates

Space of functions on Z-twisted Miura ($S L(r+1, \hbar)$-opers

$$
\downarrow
$$

Space of functions on the intersection of two Lagrangian subvarieties in trigonometric Ruijsenaars-Schneider (tRS) phase space.

$$
\text { Bethe equations } \leftrightarrow\left\{H_{k}=f_{k}\left(\left\{a_{i}\right\}\right)\right\}
$$

Here H_{k} are tRS Hamiltonians

$$
H_{k}=\sum_{\substack{J \subset\{1, \ldots, r+1\} \\|J|=k}} \prod_{\substack{i \in J \\ j \neq J}} \frac{\xi_{i}-\hbar \xi_{j}}{\xi_{i}-\xi_{j}} \prod_{m \in J} p_{m}
$$

and f_{k} are elementary symmetric functions of a_{i}.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
E. Frenkel, P. Koroteev, D. Sage, A.Z. '20

Introduction

\hbar-Opers for $\widehat{\mathfrak{g} l}(1)$ and Bethe ansatz

Let us "complete" Miura $(S L(r+1), \hbar)$-opers:
($\overline{G L}(\infty), \hbar)$:

$$
A(u)=\prod_{i=+\infty}^{-\infty} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{\xi_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{Q_{+}^{i}(\hbar u)}{Q_{+}^{i}(u)} .
$$

Introduction

QQ-systems

Differential limit, Miura opers and Gaudin models

Infinite-dimensional $Q Q$-system:
$\xi_{i+1} Q_{i}^{+}(\hbar u) Q_{i}^{-}(u)-\xi_{i} Q_{i}^{+}(u) Q_{i}^{-}(\hbar u)=\Lambda_{i}(u) Q_{i-1}^{+}(u) Q_{i+1}^{+}(\hbar u), i=1, \ldots, r$, where $\xi_{i}=z_{i} / z_{i-1}$.

Impose periodic condition: $V A(u) V^{-1}=\xi A(p u)$, where V corresponds to automorphism of Dynkin diagram $i \rightarrow i+1$.
V can be actually relized as an "infinite" Coxeter element of standard order.

That corresponds to $Q_{j}^{ \pm}(u)=Q^{ \pm}\left(p^{j} u\right), \Lambda_{j}(u)=\xi^{j} \Lambda(u), \xi_{j}=\xi^{j}$

\hbar-Opers for $\widehat{\mathfrak{g} l}(1)$ and Bethe ansatz

Let us "complete" Miura $(S L(r+1), \hbar)$-opers:
$(\overline{G L}(\infty), \hbar)$:

$$
A(u)=\prod_{i=+\infty}^{-\infty} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=z_{i} \frac{Q_{+}^{i}(\hbar u)}{Q_{+}^{i}(u)} .
$$

Introduction

Infinite-dimensional $Q Q$-system:
$\xi_{i+1} Q_{i}^{+}(\hbar u) Q_{i}^{-}(u)-\xi_{i} Q_{i}^{+}(u) Q_{i}^{-}(\hbar u)=\Lambda_{i}(u) Q_{i-1}^{+}(u) Q_{i+1}^{+}(\hbar u), i=1, \ldots, r$, where $\xi_{i}=z_{i} / z_{i-1}$.

Impose periodic condition: $V A(u) V^{-1}=\xi A(p u)$, where V corresponds to automorphism of Dynkin diagram $i \rightarrow i+1$.
V can be actually relized as an "infinite" Coxeter element of standard order.

That corresponds to $Q_{j}^{ \pm}(u)=Q^{ \pm}\left(p^{j} u\right), \Lambda_{j}(u)=\xi^{j} \Lambda(u), \xi_{j}=\xi^{j}$:

$$
\xi Q^{+}(\hbar u) Q^{-}(u)-Q^{+}(u) Q^{-}(\hbar u)=\Lambda(u) Q^{+}\left(u p^{-1}\right) Q^{+}(\hbar p u)
$$

Applications

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models
(SL(r+1), $\hbar)$-opers and Bethe equations
(G, \hbar)-opers
Applications

- Applications to ODE/IM correspondence: affine G-opers and (G, \hbar)-opers

Applications

- Quantum/classical duality: duality between Bethe equations and multiparticle systems
P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys., 381 (2021) 641-672, arXiv:1811.09937
- Quantum equivariant K-theory of Nakajima quiver varieties and 3D mirror symmetry
P. Koroteev, A.Z., Toroidal q-Opers, to appear in Journal of the Institute of Mathematics of Jussieu, in press, arXiv:2007.11786
P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588
- Applications to ODE/IM correspondence: affine G-opers and (G, \hbar)-opers

Introduction

QQ-systems
Differential limit, Miura opers and

Applications

Introduction

QQ-systems
Differential limit,

- Quantum/classical duality: duality between Bethe equations and multiparticle systems
P. Koroteev, D. Sage, A. Z., $(S L(N), q)$-opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys., 381 (2021) 641-672, arXiv:1811.09937
- Quantum equivariant K-theory of Nakajima quiver varieties and 3D mirror symmetry
P. Koroteev, A.Z., Toroidal q-Opers, to appear in Journal of the Institute of Mathematics of Jussieu, in press,
P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588
- Applications to ODE/IM correspondence: affine G-opers and (G, \hbar)-opers
E. Frenkel, P. Koroteev, A.Z., in progress

arXiv:2007.11786

Introduction

QQ-systems
Differential limit, Miura opers and Gaudin models
$(S L(r+1), \hbar)$-opers and Bethe equations
(G, \hbar)-opers
Applications

Happy Birthday, Igor!

