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Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p:

Hamiltonian: H =
p2 + q2

2
,

Poisson bracket: {F ,G} =
∂F

∂p

∂G

∂q
− ∂G

∂p

∂F

∂q
.

Equations of motion:

dq
dt

= {H, q} = p

dp
dt

= {H, p} = −q

}
⇒ d2q

dt2
+ q = 0

Action-angle variables: polar coordinates in (q, p)-space.

Energy level set: LE = {p2 + q2 = E} is a circle.

Equations of motion for action-angle variables (H, φ):

dφ

dt
= ω,

dH

dt
= 0
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Classical integrable systems: what are they?

Symplectic 2n-manifold M: phase space, which has information of
coordinates and momenta of a physical system.

Equations of motion:

df

dt
= {H, f }.

Integrability: family of conserved quantities: {Fi}ni=1:

{Fi ,Fj} = 0, F1 = H.

Liouville-Arnold theorem:

I Compact connected components of Lc = {Fi = ci}ni=1 are
diffeomorphic to Tn.

I Existence of action-angle variables {Ii}ni=1, {φi}ni=1 in the
neighborhood of Lc :

dφi

dt
= ωi ,

dIi
dt

= 0.

Finding action/angle variables is a non-trivial problem.
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Explosion of interest in integrable systems: 60s -70s

Integrable soliton equations in (1+1)-dimensions,
e.g. Korteweg-de Vries (KdV) equation:

ut = −uxxx + 6uux .

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura’67; P. Lax’68;

L. Faddeev, V. Zakharov’71

Lie-theoretic methods through Lax pair formulation:

dL

dt
= [A, L],

where L = −∂2
x + u(x , t) for KdV.

I. Gelfand, L. Dickey’76; V. Drinfeld, V. Sokolov’85

Inverse Scattering Method (ISM):

spectral data of L → action-angle variables

At the same time many finite-dimensional multiparticle integrable
systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider,
etc.
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Quantum Integrable models: 70s-80s

Quantum integrability:

[Hi ,Hj ] = 0, Hi : H→ H

Finding action/angle variables → simultaneous diagonalization of Hi .

Quantization of (1+1)-models? Put them on the lattice.

Lattice integrable models → new algebraic structures:

R-matrix and Yang-Baxter equation

accompanied with

algebraic Bethe ansatz

lead to the the discovery of Quantum inverse scattering method (QISM)
developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and
Jimbo.
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R.P. Feynman: “I got really fascinated by these (1+1)-dimensional
models that are solved by the Bethe ansatz and how mysteriously they
jump out at you and work and you don’t know why. I am trying to
understand all this better.”
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90s: Geometrization era begins

I Dubrovin, Givental, Kontsevich, Witten established first relations
with integrability in the context of enumerative geometry.

Notable cases:

I Witten’s conjecture, proven by Kontsevich, relating intersection
numbers on the moduli space of curves and the τ -function of KdV
model.

I Givental and collaborators: description of the enumerative geometry
of flag varieties (quantum cohomology/quantum K-theory) via
classical and quantum multiparticle systems of Toda type.

I Feigin, Frenkel, and collaborators, while studying conformal field
theory/representation theory of affine Lie algebras, discovered the
relation:

Connections on P1 called opers ↔ Gaudin integrable model

That turned out to be an example of the geometric Langlands
correspondence.



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

90s: Geometrization era begins

I Dubrovin, Givental, Kontsevich, Witten established first relations
with integrability in the context of enumerative geometry.

Notable cases:

I Witten’s conjecture, proven by Kontsevich, relating intersection
numbers on the moduli space of curves and the τ -function of KdV
model.

I Givental and collaborators: description of the enumerative geometry
of flag varieties (quantum cohomology/quantum K-theory) via
classical and quantum multiparticle systems of Toda type.

I Feigin, Frenkel, and collaborators, while studying conformal field
theory/representation theory of affine Lie algebras, discovered the
relation:

Connections on P1 called opers ↔ Gaudin integrable model

That turned out to be an example of the geometric Langlands
correspondence.



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

2000s – geometric representation theory and integrable models

I Nakajima, Schiffmann, Varagnolo-Vasserot:

Geometric realization of representations of quantum groups on
cohomology and K-theory of symplectic resolutions, in particular,
on Nakajima quiver varieties.

Okounkov:
“Symplectic resolutions are the Lie algebras of XXI century”

I 2010s: Nekrasov, Shatashvili:

Hints from supersymmetric gauge theory → geometric realization
of quantum integrable models solved by Bethe ansatz.

Okounkov and his school: enumerative geometry of symplectic
resolutions.
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In this talk

Fusion of:

I Theory of integrable systems

I Geometric representation theory

I Enumerative geometry

I Supersymmetric gauge theories

More concretely, we will discuss the following:

I Mathematical formulation and proof of Nekrasov-Shatashvili
conjectures.
Bethe ansatz solution for quantum integrable systems encodes
enumerative invariants of certain symplectic resolutions:
quantum cohomology, quantum K-theory.

I On the other hand, geometrization of the relations in the
corresponding rings lead to the deformation of the version of
geometric Langlands correspondence by Feigin-Frenkel.

I Applications bring together many parts of theoretical physics and
mathematics, such as quantum-classical duality, cluster algebras,
and 3D mirror symmetry.
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In collaboration with:

P. Koroteev, P. Pushkar, E. Frenkel, D. Sage, A. Smirnov:

I P. Koroteev, A.Z., Zoo of Opers and Dualities,

arXiv:2208.08031

I P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces,

arXiv:2105.00588

I P. Koroteev, A.Z., q-Opers, QQ-Systems, and Bethe Ansatz II: Generalized Minors, to appear in

Crelle J., arXiv:2108.04184

I P. Koroteev, A.Z.,Toroidal q-Opers, to appear in

J. Inst. Math. Jussieu, arXiv:2007.11786

I P. Koroteev, E. Frenkel, D. Sage, A.Z., q-Opers, QQ-Systems, and Bethe Ansatz, to appear in

J. Eur. Math. Soc., arXiv:2002.07344

I P. Koroteev, D. Sage, A.Z., (SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality,

Comm. Math. Phys.’21

I P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,

Selecta Math. ’21

I P. Koroteev, A.Z., qKZ/tRS Duality via Quantum K-Theoretic Counts,

Math. Res. Lett.’21

I P. Pushkar, A. Smirnov, A.Z.,Baxter Q-operator from quantum K-theory,

Adv. Math.’20



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

Affine algebras and finite-dimensional modules

Let us consider Lie algebra g.

The associated loop algebra is ĝ = g[t, t−1] and t is known as spectral
parameter.

The following representations, known as evaluation modules, form a
tensor category of ĝ:

V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an),

where

I Vi are representations of g

I ai are values for t
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V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an),

where

I Vi are representations of g

I ai are values for t



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

Quantum groups

Quantum groups:

U~(ĝ)

are deformations of U(ĝ), with a nontrivial intertwiner RV1,V2 (a1/a2):

V1(a1)⊗ V2(a2)

V2(a2)⊗ V1(a1)
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Quantum groups

Quantum groups:

U~(ĝ)

are deformations of U(ĝ), with a nontrivial intertwiner RV1,V2 (a1/a2):

V1(a1)⊗ V2(a2)

V2(a2)⊗ V1(a1)

which is a rational function of a1, a2, satisfying Yang-Baxter equation:

The generators of U~(ĝ) emerge as matrix elements of R-matrices:
FRT construction.
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Spin chain models and transfer matrices

Physical space:

Hphys = V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an).

Auxiliary spaces: W (u).

Quantum monodromy matrix:

M(u) = (Z ⊗ Id)R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys

Here R̃ is the R-matrix, composed with permutation operator,
Z ∈ eh - diagonal.
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Spin chain models and transfer matrices

Physical space:

Hphys = V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an).

Auxiliary spaces: W (u).

Quantum monodromy matrix:

M(u) = (Z ⊗ Id) R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys

Here R̃ is the R-matrix, composed with permutation operator,
Z ∈ eh ∈ U~(ĝ) - diagonal.

Transfer matrix:

TW (u) = TrW (u)

[
M(u)

]
, TW (u) : Hphys → Hphys
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Quantum Integrability

Integrability:

[TW ′(u′),TW (u)] = 0

follows from Yang-Baxter relation.

Transfer matrices TW (u) generate Bethe algebra:

TW (u) =
∑
n

unIn, [In, Im] = 0.

Primary goal: diagonalize {TW (u)} simultaneously.
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g = sl(2): Heisenberg spin chain

Hphys = C2(a1)⊗ C2(a2)⊗ · · · ⊗ C2(an)

States : ↑↑↑↑ ↓ ↑↑↑ ↓ ↑↑↑↑ ↓ ↑↑↑↑↑ ↓↓ ↑↑↑

Here C2(u) stands for 2-dimensional representation of U~(ŝl2).

Algebraic Bethe ansatz as a part of QISM:

TC2(u) = TrC2(u)

[
(Z⊗Id) R̃C2(u),Hphys

]
= Tr

(
A(u) B(u)
C(u) D(u)

)
= A(u)+D(u)

A(u),B(u),C(u),D(u) : Hphys → Hphys

Bethe vectors:

|0〉 = ↑↑↑ . . . ↑↑↑

{B(x1)...B(xk)|0〉; C(x)|0〉 = 0}

Commutation relations between A,B,C ,D: from Yang-Baxter equation.
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Bethe equations and Q-operator

The eigenvalues are symmetric functions of Bethe roots {xi}:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1, . . . , k,

Special element in the Bethe algebra: Q-operator.

The eigenvalues Q(u) of the Q-operator are the generating functions for
the elementary symmetric functions of Bethe roots:

Q(u) =
k∏

i=1

(u − xi )

A real challenge is to describe representation-theoretic meaning of
Q-operator for general g (possibly infinite-dimensional).
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Modern point of view: qKZ-equations

Quantum Knizhnik-Zamolodchikov (Frenkel-Reshetikhin) equations:

Ψ(a1, . . . , qak , . . . , ain , {zi}) = H
(q)
k Ψ(a1, . . . , , an, {zi}),

+

commuting q − difference equations in Z−components (dynamical)

I Ψ takes values in Hphys = V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an),

I operators {H(q)
i } are expressed in terms of products of R-matrices

and twist parameter, e.g.,

Ψ(qa1, . . . , an, {zi}) = (Z ⊗ 1⊗ · · · ⊗ 1)RV1,Vn . . .RV1,V2 Ψ

I {H(1)
i = limq→1 H

(q)
i } coincide with transfer matrices of certain

kind.
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Solutions to qKZ

Types of solutions:

I jointly analytic in a chamber of {ai}:

conformal blocks for U~(ĝ), i.e. products of Intertwining operators
for centrally extended U~(ĝ), where central charge is related to q.

I jointly analytic in {zi}:

conformal blocks for deformed W-algebra: Wq,t(
Lg).

The relationship between this solutions is an essential part of

Quantum q-Langlands correspondence
M. Aganagic, E. Frenkel, A. Okounkov’17

One can obtain Bethe equations from asymptotic behavior of solutions
to qKZ equations in q → 1 limit.
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conformal blocks for U~(ĝ), i.e. products of Intertwining operators
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Geometrization: Nakajima quiver varieties

M: affine space constructed via quiver (oriented graph) which is the
representation of

G = GL(v1)× GL(v2) · · · × GL(vrank(g)),

so that future Bethe root variables parametrize maximal torus of G .

We build M as a direct sum of:

I ⊕iHom(Vi ,Wi ), where dim(Vi ) = vi , Wi is known as framing

I ⊕i→jHom(Vi ,Vj)

T ∗M: phase space with Poisson bracket.

Nakajima quiver variety is a “clever” quotient, called algebraic
symplectic reduction:

N = T ∗M////G

Nakajima, Varagnolo-Vasserot, Maulik-Okounkov: Localized equivariant
cohomology/K-theory of N has the structure of weight space for
representations of Y~(g)/U~(g). Weight is determined by a collection
v1, . . . , vrank(g)
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Example: Nk,n = T ∗Gr(k, n)

Let dim(V ) = k, dim(W ) = n,

M = Hom(V ,W ),

T ∗M = Hom(V ,W )⊕ Hom(W ,V )

The moment map:

µ : T ∗M→ End(V ); (A,B) 7→ BA

generates the GL(V )-action.

Then

T ∗Gr(k, n) = Nk,n = T ∗M////GL(V ) = µ−1(0)//GL(V ) = µ−1(0)ss/GL(V ).

The semi-stability condition: Hom(V ,W ) is injective.
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Equivariant K-theory

Torus action:

A = C×a1
× · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Tautological bundles:

V = T ∗M× V ////GL(V ), W = T ∗M×W ////GL(V )

For any τ ∈ S(x±1
1 , x±1

2 , . . . x±1
k ) we have:

τ(V) = T ∗M× τ(V )////GL(V )

Example: τ(V ) = V⊗2 − Λ3V ∗ corresponds to

τ(x1, . . . , xk) = (x1 + · · ·+ xk)2 −
∑

1≤i1≤i2≤i3≤k

x−1
i1

x−1
i2

x−1
i3
.

Equivariant K -theory is generated by tautological bundles under tensor
product.



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

Equivariant K-theory

Torus action:

A = C×a1
× · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Tautological bundles:

V = T ∗M× V ////GL(V ), W = T ∗M×W ////GL(V )

For any τ ∈ S(x±1
1 , x±1

2 , . . . x±1
k ) we have:

τ(V) = T ∗M× τ(V )////GL(V )

Example: τ(V ) = V⊗2 − Λ3V ∗ corresponds to

τ(x1, . . . , xk) = (x1 + · · ·+ xk)2 −
∑

1≤i1≤i2≤i3≤k

x−1
i1

x−1
i2

x−1
i3
.

Equivariant K -theory is generated by tautological bundles under tensor
product.



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

Equivariant K-theory

Torus action:

A = C×a1
× · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Tautological bundles:

V = T ∗M× V ////GL(V ), W = T ∗M×W ////GL(V )

For any τ ∈ S(x±1
1 , x±1

2 , . . . x±1
k ) we have:

τ(V) = T ∗M× τ(V )////GL(V )

Example: τ(V ) = V⊗2 − Λ3V ∗ corresponds to

τ(x1, . . . , xk) = (x1 + · · ·+ xk)2 −
∑

1≤i1≤i2≤i3≤k

x−1
i1

x−1
i2

x−1
i3
.

Equivariant K -theory is generated by tautological bundles under tensor
product.



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

Equivariant K-theory

Torus action:

A = C×a1
× · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Tautological bundles:

V = T ∗M× V ////GL(V ), W = T ∗M×W ////GL(V )

For any τ ∈ S(x±1
1 , x±1

2 , . . . x±1
k ) we have:

τ(V) = T ∗M× τ(V )////GL(V )

Example: τ(V ) = V⊗2 − Λ3V ∗ corresponds to

τ(x1, . . . , xk) = (x1 + · · ·+ xk)2 −
∑

1≤i1≤i2≤i3≤k

x−1
i1

x−1
i2

x−1
i3
.

Equivariant K -theory is generated by tautological bundles under tensor
product.



Anton M. Zeitlin

Introduction

Quantum Integrable
models

Enumerative geometry
and Bethe ansatz

QQ-systems and
(G, ~)-opers

Applications

Tori, Fixed points and Bethe roots

Torus action:

A = C×a1
× · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Fixed points: p = {s1, . . . , sk} ∈ {a1, . . . , an}

Let N(n) = tkNk,n = tkT
∗Gr(k, n).

Localized K-theory: KT (N(n))loc as a Q(a1, . . . , an, ~)-module is
identified with:

Hphys = C2(a1)⊗ C2(a2)⊗ · · · ⊗ C2(an)

generated by Op.

“Classical” Bethe equations: The eigenvalues of the operators of
multiplication by τ are τ(x1, · · · , xk) evaluated at the solutions of the
following equations:

n∏
j=1

(xi − aj) = 0, i = 1, . . . , k, with xi 6= xj
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Quasimaps

Quasimap f : C = P1 99K Nk,n is the following collection of data:

I vector bundle V on P1 of rank k.

I section f ∈ H0(P1,M ⊕M ∗ ⊗ ~), satisfying the condition µ = 0,
where M = Hom(V ,W ), so that W is a trivial bundle of rank n.

evp(f ) = f (p) ∈ [µ−1(0)/GL(V )] ⊃ Nk,n

Quasimap is stable if f (p) ∈ Nk,n for all but finitely many points, known
as singularities of quasimap.

For the moduli space of stable quasimaps

QM(Nk,n)

only V and f vary, while C and W remain the same.

deg(f ) := deg(V ), QM(Nk,n) = td≥0QMd(Nk,n).
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Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on
C× S1:

Gauge field theory with gauge group G = ×rankg
i=1 U(vi ) defined by a

certain action functional S(φ{α},A{i}).

I A{i}: U(vi )-connections (gauge fields)

I φ{α}: sections of associated vector U(vi )-bundles, corresponding to
the quiver data (matter fields)

Physicists compute path integrals:

〈F 〉 =

∫
[dφ{α}][dA{i}]e

−S(φ{α},A{i})F (φ{α},A{i})

Minima of S : Moduli of Higgs vacua ←→ Nakajima quiver variety:

T ∗M////G = µ−1(0)//G = N

where µ = 0 is a momentum map (low energy configuration) condition.
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In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on
C× S1:

Gauge field theory with gauge group G = ×rankg
i=1 U(vi ) defined by a

certain action functional S(φ{α},A{i}).

I A{i}: U(vi )-connections (gauge fields)

I φ{α}: sections of associated vector U(vi )-bundles, corresponding to
the quiver data (matter fields)

Physicists compute path integrals:

〈F 〉 =

∫
[dφ{α}][dA{i}]e

−S(φ{α},A{i})F (φ{α},A{i})

Minima of S : Moduli of Higgs vacua ←→ Nakajima quiver variety:

T ∗M////G = µ−1(0)//G = N

where µ = 0 is a momentum map (low energy configuration) condition.
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SUSY path integral and enumerative computations

〈F 〉 corresponds to weighted K-theoretic counts of quasimaps:

Euler characteristics of equivariant pushforwards of sheaves of quasimap
moduli space QM(Nk,n).

The weight (Kähler) parameter is Zdeg(f), which is exactly twist
parameter Z we encountered before.

“Line operators”–traces of holonomy of gauge fields generate quantum
K-theory ring, so that the structure constants of algebra are given by:
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Nekrasov-Shatashvili conjecture and enumerative computations

Conjecture of Nekrasov and Shatashvili ’09 (through 3D gauge theory):

Quantum equivariant K− theory ring of quiver variety =

Bethe algebra of related spin chain system
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Nekrasov-Shatashvili conjecture and enumerative computations

Conjecture of Nekrasov and Shatashvili ’09 (through 3D gauge theory):

Quantum equivariant K− theory ring of Nakajima variety =

Bethe algebra of related spin chain system

Okounkov’15:

q− difference equations for counting (vertex) functions =

qKZ equations + dynamical equations

What are we counting?

Quasimaps to quiver varieties:{
q, {ai} → equivariant parameters
{zi} → “counting” (Kähler) parameters
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Quantum tautological classes for T ∗(Gr(k , n))

Deformation of the product: A ~ B = A⊗ B +
∑∞

d=1 A⊗d B zd .

Quantum tautological classes – deformations of τ = T ∗M× τ(V ):

τ̂(z) = τ +
∞∑
d=1

τ dz
d ∈ KT (N(n))[[z]]

Theorem.

I The eigenvalues of operators of quantum multiplication by τ̂(z) are
given by the values of the corresponding Laurent polynomials
τ(x1, . . . , xk) evaluated at the solutions of Bethe equations:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1, . . . , k,

I Baxter Q-operator: Q(u) =
∑k

i=1(−1)iuk−i
[
ΛiV

]
(z)~

P. Pushkar, A. Smirnov, A.Z.,
Baxter Q-operator from quantum K-theory, Adv. Math. ’20
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Further developments

I Generalization to type An, also connection to classical many
body-systems for T ∗Fl .

P. Koroteev, P. Pushkar, A. Smirnov, A.Z.,
Quantum K-theory of Quiver Varieties and Many-Body Systems,
Selecta Math. ’21

I Connection to quantum many-body systems (as in Givental-Lee) in
the context of partial flags through the works of Cherednik and
Matsuo.

P. Koroteev, A.Z.,
qKZ/tRS Duality via Quantum K-Theoretic Counts,
Math. Res. Lett. ’21

I 3D mirror symmetry for instanton spaces and their cyclic quiver
generalizations

P. Koroteev, A. Z.,
3d Mirror Symmetry for Instanton Moduli Spaces,
arXiv:2105.00588
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QQ-system for T ∗Gr

Short exact sequence of bundles:

0→ V →W → ~⊗ V∨ → 0

Q(u) =
k∑

i=1

(−1)iuk−i
[
ΛiV

]
(z)~

Q̃(u) =
k∑

i=1

(−1)iuk−i
[
ΛiV∨

]
(z)~

Eigenvalues of these two operators are related via QQ-system:

Q̃(~u)Q(u)− zQ(~u)Q̃(u) =
∏
i

(u − ai )

Equivalent to Bethe ansatz equations.
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(G , ~)-connections

M~ : P1 → P1, such that u → ~u.

Let FG be a G -bundle over P1:

I G - simple simply connected Lie group associated to Lie algebra g.

I F~
G is a pushforward w.r.t. M~.

(G , ~)-connection: a meromorphic section of HomOP1 (FG ,F
~
G ).

Locally:

~-gauge transformations of (G , ~)-connection:

A(u)→ g(~u)A(u)g−1(u),

where A(u) ∈ G(u) = G(C(u)).

Compare it with standard gauge transformations:

∂u + A(u)→ g(u)(∂u + A(u))g−1(u),

where A(u) ∈ g(u).
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Miura (G , ~)-opers

Miura (G , ~)-oper is a quadruple : (FG ,A,FB+ ,FB−), such that:

I A is (G , ~) - connection

I Oper condition: FB+ : A lies in the Coxeter cell B+cB+

I Miura condition: FB− : preserved by A

(G , ~)-oper is Z -twisted if it is gauge equivalent to Z ∈ H, namely

A(u) = v(~u)Zv−1(u), where Z =
∏
i

ζα̌i
i ∈ H, v(u) ∈ G(u).

Example: SL(r + 1)

A ∈


∗ 0 0 · · · 0
∗ ∗ 0 · · · 0
0 ∗ ∗ · · · 0
...

...
...

. . .
...

0 0 · · · ∗ ∗

 Z − diagonal

Regular singularities: {Λi (u)}ri=1–polynomials on subdiagonal.
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Miura (G , ~)-opers and ~-Langlands duality

Theorem.
There is a one-to-one correspondence between the set of nondegenerate
Z -twisted Miura (G , ~)-opers and the set of nondegenerate polynomial
solutions of the QQ-system:

ξ̃iQ
i
−(u)Q i

+(~u)− ξiQ i
−(~u)Q i

+(u) =

Λi (u)
∏
j>i

[
Q j

+(~u)
]−aji ∏

j<i

[
Q j

+(u)
]−aji

, i = 1, . . . , r ,

where ξ̃i = ζ−1
i

∏
j>i ζ

−aji
j , ξi = ζi

∏
j<i ζ

aji
j .

P. Koroteev, D. Sage, A.Z.,

(SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality,Comm. Math. Phys. ’21

E. Frenkel, P. Koroteev, D. Sage, A.Z.,

q-Opers, QQ-Systems, and Bethe Ansatz, to appear in J. Eur. Math. Soc., arXiv:2002.07344

In ADE case this QQ-system correspond to the Bethe ansatz equations.

Beyond simply-laced case: “folded integrable models”, based on L̂g, see

E. Frenkel, D. Hernandez, N. Reshetikhin,

Folded quantum integrable models and deformed W-algebras, Lett. Math. Phys. ’22
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Applications

I Cluster algebras in Bethe ansatz through the notion of
(G , ~)-Wronskians: QQ-systems via generalized minors of
Fomin, Zelevinsky.
P. Koroteev, A.Z.,

q-Opers, QQ-systems, and Bethe Ansatz II: Generalized Minors, to appear in Crelle J., arXiv:2108.04184

I Quantum-classical duality: relation between classical multiparticle
systems and spin chain systems through the natural coordinate
change on (G , ~)-opers.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,

Selecta Math.’21;
P. Koroteev, D. Sage, A.Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality,

Comm. Math. Phys. ’21

I 3D mirror symmetry: pairs of symplectic resolutions with similar
properties. Coulomb and Higgs branches of 3D gauge theories.
Enumerative geometry: {ai}- vs {zi}- qKZ equations.

P. Koroteev, A.Z.,Toroidal q-Opers, to appear in J. Inst. Math. Jussieu, arXiv:2007.11786

P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

I Relation to quantum q-Langlands correspondence:
(G , ~)-opers → scalar differential operators for q → 1 limit of
conformal blocks for Wq,t(

Lg).
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q-Opers, QQ-systems, and Bethe Ansatz II: Generalized Minors, to appear in Crelle J., arXiv:2108.04184

I Quantum-classical duality: relation between classical multiparticle
systems and spin chain systems through the natural coordinate
change on (G , ~)-opers.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,

Selecta Math.’21;
P. Koroteev, D. Sage, A.Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality,

Comm. Math. Phys. ’21

I 3D mirror symmetry: pairs of symplectic resolutions with similar
properties. Coulomb and Higgs branches of 3D gauge theories.
Enumerative geometry: {ai}- vs {zi}- qKZ equations.

P. Koroteev, A.Z.,Toroidal q-Opers, to appear in J. Inst. Math. Jussieu, arXiv:2007.11786

P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

I Relation to quantum q-Langlands correspondence:
(G , ~)-opers → scalar differential operators for q → 1 limit of
conformal blocks for Wq,t(

Lg).
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