Introduction

Geometric wonders of classical and quantum integrable systems

Anton M. Zeitlin
Louisiana State University

University of Oregon
Eugene
November 13, 2023

Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p :

$$
\text { Hamiltonian: } \quad H=\frac{p^{2}+\omega^{2} q^{2}}{2}
$$

Poisson bracket: $\quad\{F, G\}=\frac{\partial F}{\partial p} \frac{\partial G}{\partial q}-\frac{\partial G}{\partial p} \frac{\partial F}{\partial q}$.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Equations of motion: $\left.\quad \begin{array}{l}\frac{d q}{d t}=\{H, q\}=p \\ \frac{d p}{d t}=\{H, p\}=-\omega^{2} q\end{array}\right\} \Rightarrow \frac{d^{2} q}{d t^{2}}+\omega^{2} q=0$

Action-angle variables: polar coordinates in (q, p)-space.
Energy level set: $L_{E}=\left\{p^{2}+\omega^{2} q^{2}=2 E\right\}$ is a circle.

Equations of motion for action-angle variables (H, ϕ) :

Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p :

$$
\text { Hamiltonian: } \quad H=\frac{p^{2}+\omega^{2} q^{2}}{2}
$$

Poisson bracket: $\quad\{F, G\}=\frac{\partial F}{\partial p} \frac{\partial G}{\partial q}-\frac{\partial G}{\partial p} \frac{\partial F}{\partial q}$.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Equations of motion: $\left.\quad \begin{array}{l}\frac{d q}{d t}=\{H, q\}=p \\ \frac{d p}{d t}=\{H, p\}=-\omega^{2} q\end{array}\right\} \Rightarrow \frac{d^{2} q}{d t^{2}}+\omega^{2} q=0$

Action-angle variables: polar coordinates in (q, p)-space.
Energy level set: $L_{E}=\left\{p^{2}+\omega^{2} q^{2}=2 E\right\}$ is a circle.
Equations of motion for action-angle variables (H, ϕ):

$$
\frac{d \phi}{d t}=\omega, \quad \frac{d H}{d t}=0
$$

Classical integrable systems: what are they?

Symplectic $2 n$-manifold M : phase space, which has information of coordinates and momenta of a physical system.

Equations of motion:

$$
\frac{d f}{d t}=\{H, f\}
$$

$$
\left\{F_{i}, F_{j}\right\}=0, \quad F_{1}=H .
$$

Liouville-Arnold theorem:

- Compact connected components of $L_{c}=\left\{F_{i}=c_{i}\right\}_{i=1}^{n}$ are diffeomorphic to \mathbb{T}^{n}.
- Existence of action-angle variables $\left\{I_{i}\right\}_{i=1}^{n},\left\{\phi^{i}\right\}_{i=1}^{n}$ in the neighborhood of L_{c}

Finding action/angle variables is a non-trivial problem.

Classical integrable systems: what are they?

Symplectic $2 n$-manifold M : phase space, which has information of coordinates and momenta of a physical system.

Equations of motion:

$$
\frac{d f}{d t}=\{H, f\}
$$

Integrability: family of conserved quantities: $\left\{F_{i}\right\}_{i=1}^{n}$:

$$
\left\{F_{i}, F_{j}\right\}=0, \quad F_{1}=H
$$

Liouville-Arnold theorem

- Compact connected components of $L_{c}=\left\{F_{i}=c_{i}\right\}_{i=1}^{n}$ are diffeomorphic to \mathbb{T}^{n}.
- Existence of action-angle variables $\left\{I_{i}\right\}_{i=1}^{n},\left\{\phi^{i}\right\}_{i=1}^{n}$ in the neighborhood of L_{c}

Classical integrable systems: what are they?

Symplectic $2 n$-manifold M : phase space, which has information of coordinates and momenta of a physical system.

Equations of motion:

$$
\frac{d f}{d t}=\{H, f\}
$$

Integrability: family of conserved quantities: $\left\{F_{i}\right\}_{i=1}^{n}$:

$$
\left\{F_{i}, F_{j}\right\}=0, \quad F_{1}=H
$$

Liouville-Arnold theorem:

- Compact connected components of $L_{c}=\left\{F_{i}=c_{i}\right\}_{i=1}^{n}$ are diffeomorphic to \mathbb{T}^{n}.
- Existence of action-angle variables $\left\{I_{i}\right\}_{i=1}^{n},\left\{\phi^{i}\right\}_{i=1}^{n}$ in the neighborhood of L_{c} :

$$
\frac{d \phi^{i}}{d t}=\omega^{i}, \quad \frac{d l_{i}}{d t}=0
$$

Finding action/angle variables is a non-trivial problem.

Classical integrable systems: what are they?

Symplectic $2 n$-manifold M : phase space, which has information of coordinates and momenta of a physical system.

Equations of motion:

$$
\frac{d f}{d t}=\{H, f\}
$$

Integrability: family of conserved quantities: $\left\{F_{i}\right\}_{i=1}^{n}$:

$$
\left\{F_{i}, F_{j}\right\}=0, \quad F_{1}=H
$$

Liouville-Arnold theorem:

- Compact connected components of $L_{c}=\left\{F_{i}=c_{i}\right\}_{i=1}^{n}$ are diffeomorphic to \mathbb{T}^{n}.
- Existence of action-angle variables $\left\{I_{i}\right\}_{i=1}^{n},\left\{\phi^{i}\right\}_{i=1}^{n}$ in the neighborhood of L_{c} :

$$
\frac{d \phi^{i}}{d t}=\omega^{i}, \quad \frac{d l_{i}}{d t}=0
$$

Finding action/angle variables is a non-trivial problem.

Explosion of interest in integrable systems: 60s -70s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L],
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for KdV
Celfand L. Dickey'76, V. Dintéd, V. Sokotov'85

Introduction
Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Inverse Scattering Method (ISM):

$$
\text { spectral data of } L \rightarrow \text { action-angle variables }
$$

At the same time many finite-dimensional multiparticle integrable systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider, etc.

Explosion of interest in integrable systems: 60s -70 s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L],
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for $K d V$.
I. Gelfand, L. Dickey'76; V. Drinfeld, V. Sokolov'85

Inverse Scattering Method (ISM):

Explosion of interest in integrable systems: 60s -70 s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L]
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for $K d V$.
I. Gelfand, L. Dickey'76; V. Drinfeld, V. Sokolov'85

Inverse Scattering Method (ISM):

$$
\text { spectral data of } L \rightarrow \text { action-angle variables }
$$

At the same time many finite-dimensional multiparticle integrable systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider, etc.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Explosion of interest in integrable systems: 60s -70 s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L]
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for $K d V$.
I. Gelfand, L. Dickey'76; V. Drinfeld, V. Sokolov'85

Inverse Scattering Method (ISM):

$$
\text { spectral data of } L \rightarrow \text { action-angle variables }
$$

At the same time many finite-dimensional multiparticle integrable systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider, etc.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.

Introduction
Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Quantization of $(1+1)$-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.

Quantization of $(1+1)$-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.

Introduction

Quantum Integrable models

Quantization of $(1+1)$-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.

Introduction

Quantum Integrable models

Quantization of ($1+1$)-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

R.P. Feynman: "I got really fascinated by these ($1+1$)-dimensional models that are solved by the Bethe ansatz and how mysteriously they jump out at you and work and you don't know why. I am trying to understand all this better."

90s: Geometrization era begins

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

- Witten's conjecture, proven by Kontsevich, relating intersection numbers on the moduli space of curves and the τ-function of KdV model.
- Givental and collaborators: description of the enumerative geometry of flag varieties (quantum cohomology/quantum K-theory) via classical and quantum multiparticle systems of Toda type.
- Feigin, Frenkel, and collaborators, while studying conformal field theory/representation theory of affine Lie algebras, discovered the relation

Connections on \mathbb{P}^{1} called opers \leftrightarrow Gaudin integrable model That turned out to be an example of the geometric Langlands correspondence.

90s: Geometrization era begins

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

- Witten's conjecture, proven by Kontsevich, relating intersection numbers on the moduli space of curves and the τ-function of KdV model.
- Givental and collaborators: description of the enumerative geometry of flag varieties (quantum cohomology/quantum K-theory) via classical and quantum multiparticle systems of Toda type.
- Feigin, Frenkel, and collaborators, while studying conformal field theory/representation theory of affine Lie algebras, discovered the relation:

Connections on \mathbb{P}^{1} called opers \leftrightarrow Gaudin integrable model That turned out to be an example of the geometric Langlands correspondence.

2000s - geometric representation theory and integrable models

- Nakajima, Schiffmann, Varagnolo-Vasserot:

Geometric realization of representations of quantum groups on cohomology and K-theory of symplectic resolutions, in particular, on Nakajima quiver varieties.

Okounkov:
"Symplectic resolutions are the Lie algebras of XXI century"

- 2010s: Nekrasov, Shatashvili

Hints from supersymmetric gauge theory \rightarrow geometric realization of quantum integrable models solved by Bethe ansatz.

Okounkov and his school: enumerative geometry of symplectic resolutions

- Nakajima, Schiffmann, Varagnolo-Vasserot:

Geometric realization of representations of quantum groups on cohomology and K-theory of symplectic resolutions, in particular, on Nakajima quiver varieties.

Okounkov:
"Symplectic resolutions are the Lie algebras of XXI century"

- 2010s: Nekrasov, Shatashvili:

Hints from supersymmetric gauge theory \rightarrow geometric realization of quantum integrable models solved by Bethe ansatz.

Okounkov and his school: enumerative geometry of symplectic resolutions.

Introduction

Quantum Integrable models

In this talk

Anton M. Zeitlin

Fusion of:

- Theory of integrable systems
- Geometric representation theory
- Enumerative geometry

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

- Supersymmetric gauge theories

More concretely, we will discuss the following:

- Nekrasov-Shatashvili conjectures:

Bethe ansatz solution for quantum integrable systems encodes enumerative invariants of certain symplectic resolutions: quantum cohomology, quantum K-theory.

- On the other hand, geometrization of the relations in the corresponding rings lead to the deformation of the version of geometric Langlands correspondence by Feigin-Frenkel.
- Applications bring together many parts of theoretical physics and mathematics, such as quantum-classical duality, cluster algebras, and 3D mirror symmetry.

In this talk

Fusion of:

- Theory of integrable systems
- Geometric representation theory
- Enumerative geometry
- Supersymmetric gauge theories

More concretely, we will discuss the following:

- Nekrasov-Shatashvili conjectures:

Bethe ansatz solution for quantum integrable systems encodes enumerative invariants of certain symplectic resolutions: quantum cohomology, quantum K-theory.

- On the other hand, geometrization of the relations in the corresponding rings lead to the deformation of the version of geometric Langlands correspondence by Feigin-Frenkel.
* Applications bring together many parts of theoretical physics and mathematics, such as quantum-classical duality, cluster algebras, and 3D mirror symmetry

In this talk

Fusion of:

- Theory of integrable systems
- Geometric representation theory
- Enumerative geometry
- Supersymmetric gauge theories

More concretely, we will discuss the following:

- Nekrasov-Shatashvili conjectures:

Bethe ansatz solution for quantum integrable systems encodes enumerative invariants of certain symplectic resolutions: quantum cohomology, quantum K-theory.

- On the other hand, geometrization of the relations in the corresponding rings lead to the deformation of the version of geometric Langlands correspondence by Feigin-Frenkel.
- Applications bring together many parts of theoretical physics and mathematics, such as quantum-classical duality, cluster algebras, and 3 D mirror symmetry

In this talk

Fusion of:

- Theory of integrable systems
- Geometric representation theory
- Enumerative geometry

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

- Supersymmetric gauge theories

More concretely, we will discuss the following:

- Nekrasov-Shatashvili conjectures:

Bethe ansatz solution for quantum integrable systems encodes enumerative invariants of certain symplectic resolutions: quantum cohomology, quantum K-theory.

- On the other hand, geometrization of the relations in the corresponding rings lead to the deformation of the version of geometric Langlands correspondence by Feigin-Frenkel.
- Applications bring together many parts of theoretical physics and mathematics, such as quantum-classical duality, cluster algebras, and 3D mirror symmetry.

In collaboration with:

Anton M. Zeitlin

P. Koroteev, P. Pushkar, E. Frenkel, D. Sage, A. Smirnov

- P. Koroteev, A.Z., The Zoo of Opers and Dualities, arXiv:2208.08031, to appear in Int. Math. Res. Not.
- P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces,

Comm. Math. Phys.' 23

- P. Koroteev, A.Z., q-Opers, $Q Q$-Systems, and Bethe Ansatz II: Generalized Minors,
J. Reine Angew. Math.'23
- P. Koroteev, A.Z., Toroidal q-Opers,
J. Inst. Math. Jussieu'23
- P. Koroteev, E. Frenkel, D. Sage, A.Z., q-Opers, QQ-Systems, and Bethe Ansatz, to appear in J. Eur. Math. Soc., arXiv:2002.07344
- P. Koroteev, D. Sage, A.Z., (SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys.'21
- P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems, Selecta Math. '21
- P. Koroteev, A.Z., qKZ/tRS Duality via Quantum K-Theoretic Counts, Math. Res. Lett. '21
- P. Pushkar, A. Smirnov, A.Z., Baxter Q-operator from quantum K-theory,

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Affine algebras and finite-dimensional modules

Let us consider Lie algebra \mathfrak{g}.
The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

The following representations, known as evaluation modules, form a tensor category of $\hat{\mathfrak{g}}$:

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

where

- V_{i} are representations of g
- ai are values for t

Affine algebras and finite-dimensional modules

Let us consider Lie algebra \mathfrak{g}.
The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

The following representations, known as evaluation modules, form a tensor category of \mathfrak{g} :

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

where

- V_{i} are representations of \mathfrak{g}
- a_{i} are values for t

Quantum groups

Quantum groups:

$$
U_{\hbar}(\hat{\mathfrak{g}})
$$

are deformations of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right)$:

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and

(G, \hbar)-opers

$$
V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

Quantum groups

Quantum groups:

$$
U_{\hbar}(\hat{\mathfrak{g}})
$$

are deformations of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_{1}, v_{2}}\left(a_{1} / a_{2}\right)$:

$$
V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

which is a rational function of a_{1}, a_{2}, satisfying Yang-Baxter equation:

The generators of $U_{\hbar}(\hat{\mathfrak{g}})$ emerge as matrix elements of R-matrices: FRT construction.

Spin chain models and transfer matrices

Physical space:

$$
\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

Auxiliary spaces: $W(u)$.
Quantum monodromy matrix:

$$
M(u)=(Z \otimes \operatorname{Id}) \tilde{R}_{W(u), \mathscr{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\text {phys }}
$$

Here \tilde{R} is the R -matrix, composed with permutation operator, $Z \in e^{\mathfrak{h}}$ - diagonal.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz
$Q Q$-systems and
(G, \hbar)-opers
Applications

Spin chain models and transfer matrices

Physical space:

$$
\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

Auxiliary spaces: $W(u)$.
Quantum monodromy matrix:

$$
M(u)=(Z \otimes \operatorname{Id}) \tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\text {phys }}
$$

Here \tilde{R} is the R-matrix, composed with permutation operator, $Z \in e^{\mathfrak{h}}$ - diagonal.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Spin chain models and transfer matrices

Physical space:

$$
\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

Auxiliary spaces: $W(u)$.
Quantum monodromy matrix:

$$
M(u)=(Z \otimes \mathrm{Id}) \tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\mathrm{phys}}
$$

Here \tilde{R} is the R -matrix, composed with permutation operator, $Z \in e^{\mathfrak{h}} \in U_{\hbar}(\hat{\mathfrak{g}})$-diagonal.

Transfer matrix:

$$
T_{W(u)}=\operatorname{Tr}_{W(u)}[M(u)], \quad T_{W(u)}: \mathcal{H}_{\text {phys }} \rightarrow \mathcal{H}_{\text {phys }}
$$

Quantum Integrability

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

$$
\left[T_{W^{\prime}\left(u^{\prime}\right)}, T_{W(u)}\right]=0
$$

follows from Yang-Baxter relation.

Transfer matrices $T_{W(u)}$ generate Bethe algebra:

$$
T_{W(u)}=\sum_{n} u^{n} I_{n}, \quad\left[I_{n}, I_{m}\right]=0
$$

Primary goal: diagonalize $\left\{T_{W(u)}\right\}$ simultaneously.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Algebraic Bethe ansatz as a part of QISM:
$T_{\mathbb{C}^{2}(u)}=\operatorname{Tr}_{\mathbb{C}^{2}(u)}\left[(Z \otimes \mathrm{Id}) \tilde{R}_{\mathbb{C}^{2}(u), \mathcal{H}_{\text {phys }}}\right]=\operatorname{Tr}\left(\begin{array}{ll}A(u) & B(u) \\ C(u) & D(u)\end{array}\right)=A(u)+D(u)$

$$
A(u), B(u), C(u), D(u): \mathcal{H}_{\text {phys }} \rightarrow \mathcal{H}_{\text {phys }}
$$

Bethe vectors:
$|0\rangle=\uparrow \uparrow \uparrow \ldots \uparrow \uparrow \uparrow$

$$
\left\{B\left(x_{1}\right) \ldots B\left(x_{k}\right)|0\rangle ; \quad C(x)|0\rangle=0\right\}
$$

$$
\mathcal{H}_{\text {phys }}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

States: $\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow$

Here $\mathbb{C}^{2}(u)$ stands for 2-dimensional representation of $U_{\hbar}\left(\widehat{\mathfrak{F}}_{2}\right)$.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Algebraic Bethe ansatz as a part of QISM:

$$
\begin{gathered}
T_{\mathbb{C}^{2}(u)}=\operatorname{Tr}_{\mathbb{C}^{2}(u)}\left[(Z \otimes \mathrm{Id}) \tilde{R}_{\mathbb{C}^{2}(u), \mathcal{H}_{\text {phys }}}\right]=\operatorname{Tr}\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)=A(u)+D(u) \\
A(u), B(u), C(u), D(u): \mathcal{H}_{\text {phys }} \rightarrow \mathcal{H}_{\text {phys }}
\end{gathered}
$$

Bethe vectors:

$$
\mathcal{H}_{\text {phys }}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

States: $\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$

Here $\mathbb{C}^{2}(u)$ stands for 2-dimensional representation of $U_{\hbar}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

Introduction

Quantum Integrable models

Algebraic Bethe ansatz as a part of QISM:

$$
\begin{gathered}
T_{\mathbb{C}^{2}(u)}=\operatorname{Tr}_{\mathbb{C}^{2}(u)}\left[(Z \otimes \mathrm{Id}) \tilde{R}_{\mathbb{C}^{2}(u), \mathcal{H}_{\text {phys }}}\right]=\operatorname{Tr}\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)=A(u)+D(u) \\
A(u), B(u), C(u), D(u): \mathcal{H}_{\text {phys }} \rightarrow \mathcal{H}_{\text {phys }}
\end{gathered}
$$

Bethe vectors:

$$
\begin{gathered}
|0\rangle=\uparrow \uparrow \uparrow \ldots \uparrow \uparrow \uparrow \\
\left\{B\left(x_{1}\right) \ldots B\left(x_{k}\right)|0\rangle ; \quad C(x)|0\rangle=0\right\}
\end{gathered}
$$

Commutation relations between A, B, C, D : from Yang-Baxter equation.

Bethe equations and Q-operator

Introduction

Quantum Integrable models
The eigenvalues are symmetric functions of Bethe roots $\left\{x_{i}\right\}$:

$$
\prod_{j=1}^{n} \frac{x_{i}-a_{j}}{\hbar a_{j}-x_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{x_{i} \hbar-x_{j}}{x_{i}-x_{j} \hbar}, \quad i=1, \ldots, k
$$

Special element in the Bethe algebra: Q-operator.
The eigenvalues $Q(u)$ of the Q-operator are the generating functions for the elementary symmetric functions of Bethe roots:

$$
Q(u)=\prod_{i=1}\left(u-x_{i}\right)
$$

A real challenge is to describe representation-theoretic meaning of Q-operator for general \mathfrak{g} (possibly infinite-dimensional).

Bethe equations and Q-operator

Introduction

Quantum Integrable models

Enumerative geometry
and Bethe ansatz

Special element in the Bethe algebra: Q-operator.
The eigenvalues $Q(u)$ of the Q-operator are the generating functions for the elementary symmetric functions of Bethe roots:

$$
Q(u)=\prod_{i=1}^{k}\left(u-x_{i}\right)
$$

A real challenge is to describe representation-theoretic meaning of Q-operator for general \mathfrak{g} (possibly infinite-dimensional).

Modern point of view: qKZ-equations

Quantum Knizhnik-Zamolodchikov (Frenkel-Reshetikhin) equations:

$$
\Psi\left(a_{1}, \ldots, q a_{k}, \ldots, a_{i_{n}},\left\{z_{i}\right\}\right)=H_{k}^{(q)} \Psi\left(a_{1}, \ldots,, a_{n},\left\{z_{i}\right\}\right),
$$

$+$
commuting q - difference equations in Z-components (dynamical)

- Ψ takes values in $\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)$,
- operators $\left\{H_{i}^{(q)}\right\}$ are expressed in terms of products of R-matrices
and twist parameter, e.g.,

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz
$Q Q$-systems and
(G, \hbar)-opers
Applications
$\Psi\left(q a_{1}, \ldots, a_{n},\left\{z_{i}\right\}\right)=(Z \otimes 1 \otimes \cdots \otimes 1) R_{V_{1}, V_{n}} \ldots R_{V_{1}, V_{2}} \Psi$

Modern point of view: qKZ-equations

Introduction

Quantum Integrable models
commuting q - difference equations in Z-components (dynamical)

- Ψ takes values in $\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)$,
- operators $\left\{H_{i}^{(q)}\right\}$ are expressed in terms of products of R-matrices and twist parameter, e.g.,

$$
\Psi\left(q a_{1}, \ldots, a_{n},\left\{z_{i}\right\}\right)=(Z \otimes 1 \otimes \cdots \otimes 1) R_{v_{1}, v_{n}} \ldots R_{V_{1}, v_{2}} \Psi
$$

- $\left\{H_{i}^{(1)}=\lim _{q \rightarrow 1} H_{i}^{(q)}\right\}$ coincide with transfer matrices of certain kind.

Solutions to qKZ

Anton M. Zeitlin

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications
conformal blocks for $U_{\hbar}(\widehat{\mathfrak{g}})$, i.e. products of Intertwining operators for centrally extended $U_{\hbar}(\widehat{\mathfrak{g}})$, where central charge is related to q.

- jointly analytic in $\left\{z_{i}\right\}$:
conformal blocks for deformed W-algebra: $W_{q, t}\left({ }^{L} g\right)$.

The relationship between this solutions is an essential part of

Quantum q-Langlands correspondence
M. Aganagic, E. Frenkel, A. Okounkov'17

One can obtain Bethe equations from asymptotic behavior of solutions to $q K Z$ equations in $q \rightarrow 1$ limit.

Solutions to qKZ

Types of solutions:

- jointly analytic in a chamber of $\left\{a_{i}\right\}$:
conformal blocks for $U_{\hbar}(\widehat{\mathfrak{g}})$, i.e. products of Intertwining operators for centrally extended $U_{\hbar}(\widehat{\mathfrak{g}})$, where central charge is related to q.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

The relationship between this solutions is an essential part of

Quantum q-Langlands correspondence

One can obtain Bethe equations from asymptotic behavior of solutions to $q K Z$ equations in $q \rightarrow 1$ limit.

Solutions to qKZ

Types of solutions:

- jointly analytic in a chamber of $\left\{a_{i}\right\}$:
conformal blocks for $U_{\hbar}(\widehat{\mathfrak{g}})$, i.e. products of Intertwining operators for centrally extended $U_{\hbar}(\widehat{\mathfrak{g}})$, where central charge is related to q.
- jointly analytic in $\left\{z_{i}\right\}$:
conformal blocks for deformed W-algebra: $W_{q, t}\left({ }^{L} \mathfrak{g}\right)$.

The relationship between this solutions is an essential part of

Quantum q-Langlands correspondence

One can obtain Bethe equations from asymptotic behavior of solutions to $q K Z$ equations in $q \rightarrow 1$ limit.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Solutions to qKZ

Introduction

Types of solutions:

- jointly analytic in a chamber of $\left\{a_{i}\right\}$:
conformal blocks for $U_{\hbar}(\widehat{\mathfrak{g}})$, i.e. products of Intertwining operators for centrally extended $U_{\hbar}(\widehat{\mathfrak{g}})$, where central charge is related to q.
- jointly analytic in $\left\{z_{i}\right\}$:
conformal blocks for deformed W-algebra: $W_{q, t}\left({ }^{L} \mathfrak{g}\right)$.

The relationship between this solutions is an essential part of

Quantum q-Langlands correspondence
M. Aganagic, E. Frenkel, A. Okounkov'17

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Solutions to qKZ

Introduction

Types of solutions:

- jointly analytic in a chamber of $\left\{a_{i}\right\}$:
conformal blocks for $U_{\hbar}(\widehat{\mathfrak{g}})$, i.e. products of Intertwining operators for centrally extended $U_{\hbar}(\widehat{\mathfrak{g}})$, where central charge is related to q.
- jointly analytic in $\left\{z_{i}\right\}$:
conformal blocks for deformed W-algebra: $W_{q, t}\left({ }^{L} \mathfrak{g}\right)$.

The relationship between this solutions is an essential part of

Quantum q-Langlands correspondence
M. Aganagic, E. Frenkel, A. Okounkov'17

One can obtain Bethe equations from asymptotic behavior of solutions to $q K Z$ equations in $q \rightarrow 1$ limit.

Quantum Integrable models

Geometrization: Nakajima quiver varieties

\mathcal{M} : affine space constructed via quiver (oriented graph) which is the representation of

$$
G=G L\left(v_{1}\right) \times G L\left(v_{2}\right) \cdots \times G L\left(v_{\operatorname{rank}(\mathfrak{g})}\right),
$$

We build \mathcal{M} as a direct sum of:

- $\oplus_{i} \operatorname{Hom}\left(V_{i}, W_{i}\right)$, where $\operatorname{dim}\left(V_{i}\right)=v_{i}, W_{i}$ is known as framing - $\oplus_{i \rightarrow j} \operatorname{Hom}\left(V_{i}, V_{j}\right)$
$T^{*} \mathcal{M}$: phase space with Poisson bracket.
Nakajima quiver variety is a "clever" quotient, called algebraic symplectic reduction:

Nakajima, Varagnolo-Vasserot, Maulik-Okounkov: Localized equivariant cohomology/K-theory of N has the structure of weight subspace for representations of $Y_{h}(g) / U_{h}(g)$. Weight is determined by a collection $v_{1}, \ldots, v_{\operatorname{rank}(g)}$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Geometrization: Nakajima quiver varieties

\mathcal{M} : affine space constructed via quiver (oriented graph) which is the representation of

$$
G=G L\left(v_{1}\right) \times G L\left(v_{2}\right) \cdots \times G L\left(v_{\operatorname{rank}(\mathfrak{g})}\right),
$$

We build \mathcal{M} as a direct sum of:

- $\oplus_{i} \operatorname{Hom}\left(V_{i}, W_{i}\right)$, where $\operatorname{dim}\left(V_{i}\right)=v_{i}, W_{i}$ is known as framing
- $\oplus_{i \rightarrow j} \operatorname{Hom}\left(V_{i}, V_{j}\right)$

$T^{*} \mathcal{M}$: phase space with Poisson bracket

Nakajima quiver variety is a "clever" quotient, called algebraic symplectic reduction:

Nakajima, Varagnolo-Vasserot, Maulik-Okounkov: Localized equivariant cohomology/K-theory of N has the structure of weight subspace for representations of $Y_{h}(g) / U_{h}(g)$. Weight is determined by a collection

Geometrization: Nakajima quiver varieties

\mathcal{M} : affine space constructed via quiver (oriented graph) which is the representation of

$$
G=G L\left(v_{1}\right) \times G L\left(v_{2}\right) \cdots \times G L\left(v_{\operatorname{rank}(\mathfrak{g})}\right),
$$

We build \mathcal{M} as a direct sum of:

- $\oplus_{i} \operatorname{Hom}\left(V_{i}, W_{i}\right)$, where $\operatorname{dim}\left(V_{i}\right)=v_{i}, W_{i}$ is known as framing
- $\oplus_{i \rightarrow j} \operatorname{Hom}\left(V_{i}, V_{j}\right)$
$T^{*} \mathcal{M}$: phase space with Poisson bracket.
Nakajima quiver variety is a "clever" quotient, called algebraic symplectic reduction:

$$
\begin{aligned}
& \qquad N=T^{*} \mathcal{M} / / / / G \\
& \text { Nakajima, Varagnolo-Vasserot, Maulik-Okounkov: Localized equivariant } \\
& \text { cohomology/K-theory of } N \text { has the structure of weight subspace for } \\
& \text { representations of } Y_{h}(g) / U_{h}(g) \text {. Weight is determined by a collection }
\end{aligned}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

$$
V_{1}, \ldots, V_{\operatorname{rank}(g)}
$$

Geometrization: Nakajima quiver varieties

\mathcal{M} : affine space constructed via quiver (oriented graph) which is the representation of

$$
G=G L\left(v_{1}\right) \times G L\left(v_{2}\right) \cdots \times G L\left(v_{\operatorname{rank}(\mathfrak{g})}\right),
$$

We build \mathcal{M} as a direct sum of:

- $\oplus_{i} \operatorname{Hom}\left(V_{i}, W_{i}\right)$, where $\operatorname{dim}\left(V_{i}\right)=v_{i}, W_{i}$ is known as framing
- $\oplus_{i \rightarrow j} \operatorname{Hom}\left(V_{i}, V_{j}\right)$
$T^{*} \mathcal{M}$: phase space with Poisson bracket.
Nakajima quiver variety is a "clever" quotient, called algebraic symplectic reduction:

$$
N=T^{*} \mathcal{M} / / / / / G
$$

Nakajima, Varagnolo-Vasserot, Maulik-Okounkov: Localized equivariant cohomology/K-theory of N has the structure of weight subspace for representations of $Y_{\hbar}(\mathfrak{g}) / U_{\hbar}(\mathfrak{g})$. Weight is determined by a collection $v_{1}, \ldots, V_{\operatorname{rank}(\mathfrak{g})}$

Introduction

Quartumi Integrable models

Enumerative geometry and Bethe ansatz

Example: $N_{k, n}=T^{*} \operatorname{Gr}(k, n)$

Let $\operatorname{dim}(V)=k, \operatorname{dim}(W)=n$,

$$
\begin{gathered}
\mathcal{M}=\operatorname{Hom}(V, W) \\
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
\end{gathered}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

The moment map:

$$
\mu: T^{*} \mathcal{M} \rightarrow \text { End }(V) ; \quad(A, B) \mapsto B A
$$

generates the $G L(V)$-action.

Then

$T^{*} G r(k, n)=N_{k, n}=T^{*} \mathcal{M} / / / / / G L(V)=\mu^{-1}(0) / / G L(V)=\mu^{-1}(0)_{s s} / G L(V)$.

The semi-stability condition: $\operatorname{Hom}(V, W)$ is injective.

Example: $N_{k, n}=T^{*} \operatorname{Gr}(k, n)$

Let $\operatorname{dim}(V)=k, \operatorname{dim}(W)=n$,

$$
\begin{gathered}
\mathcal{M}=\operatorname{Hom}(V, W), \\
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
\end{gathered}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

The moment map:

$$
\mu: T^{*} \mathcal{M} \rightarrow \operatorname{End}(V) ; \quad(A, B) \mapsto B A
$$

generates the $G L(V)$-action.

Then

$T^{*} \operatorname{Gr}(k, n)=N_{k, n}=T^{*} \mathcal{M} / / / / / G L(V)=\mu^{-1}(0) / / G L(V)=\mu^{-1}(0)_{s s} / G L(V)$.

The semi-stability condition: $\operatorname{Hom}(V, W)$ is injective.

Let $\operatorname{dim}(V)=k, \operatorname{dim}(W)=n$,

$$
\begin{gathered}
\mathcal{M}=\operatorname{Hom}(V, W), \\
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
\end{gathered}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

The moment map:

$$
\mu: T^{*} \mathcal{M} \rightarrow \operatorname{End}(V) ; \quad(A, B) \mapsto B A
$$

generates the $G L(V)$-action.

Then
$T^{*} G r(k, n)=N_{k, n}=T^{*} \mathcal{M} / / / / / G L(V)=\mu^{-1}(0) / / G L(V)=\mu^{-1}(0)_{s s} / G L(V)$.

The semi-stability condition: $\operatorname{Hom}(V, W)$ is injective.

Equivariant K-theory

Anton M. Zeitlin

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Example: $\tau(V)=V^{\otimes 2}-\Lambda^{3} V^{*}$ corresponds to

Equivariant K-theory

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W,
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Tautological bundles:

$$
\mathcal{V}=T^{*} \mathcal{M} \times V / \| / / / G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W / / / / / G L(V)
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

$$
\tau(V)=T^{*} \mathcal{M} \times \tau(V) / / / / / G L(V)
$$

Example: $\tau(V)=V^{\otimes 2}-\Lambda^{3} V^{*}$ corresponds to

Equivariant K-theory

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Tautological bundles:

$$
\nu=T^{*} \mathcal{M} \times V / / / / G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W / / / / G L(V)
$$

For any $\tau \in S\left(x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots x_{k}^{ \pm 1}\right)$ we have:

$$
\tau(\mathcal{V})=T^{*} \mathcal{M} \times \tau(V) / / / / / G L(V)
$$

Example: $\tau(V)=V^{\otimes 2}-\Lambda^{3} V^{*}$ corresponds to

$$
\tau\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}+\cdots+x_{k}\right)^{2}-\sum_{1 \leq i_{1} \leq i_{2} \leq i_{3} \leq k} x_{i_{1}}^{-1} x_{i_{2}}^{-1} x_{i_{3}}^{-1} .
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Equivariant K-theory

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Tautological bundles:

$$
V=T^{*} \mathcal{M} \times V / / / / G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W / / / / G L(V)
$$

For any $\tau \in S\left(x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots x_{k}^{ \pm 1}\right)$ we have:

$$
\tau(\mathcal{V})=T^{*} \mathcal{M} \times \tau(V) / / / / / G L(V)
$$

Example: $\tau(V)=V^{\otimes 2}-\Lambda^{3} V^{*}$ corresponds to

$$
\tau\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}+\cdots+x_{k}\right)^{2}-\sum_{1 \leq i_{1} \leq i_{2} \leq i_{3} \leq k} x_{i_{1}}^{-1} x_{i_{2}}^{-1} x_{i_{3}}^{-1} .
$$

Equivariant K-theory is generated by tautological bundles under tensor product.

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W,
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Let $N(n)=\sqcup_{k} N_{k, n}=\sqcup_{k} T^{*} \operatorname{Gr}(k, n)$.

Localized K-theory: $K_{T}(N(n))_{\text {loc }}$ as a $\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right)$-module is
identified with:

$$
\mathcal{H}_{\text {phys }}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

generated by \mathcal{O}_{p}.
"Classical" Bethe equations: The eigenvalues of the operators of
multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

$$
\prod_{j=1}^{n}\left(x_{i}-a_{j}\right)=0,
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Let $N(n)=\sqcup_{k} N_{k, n}=\sqcup_{k} T^{*} \operatorname{Gr}(k, n)$.
Localized K-theory: $K_{T}(N(n))_{\text {loc }}$ as a $\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right)$-module is identified with:

$$
\mathcal{H}_{\text {phys }}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

generated by $\mathcal{O}_{\mathbf{p}}$.
"Classical" Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions
Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Let $N(n)=\sqcup_{k} N_{k, n}=\sqcup_{k} T^{*} \operatorname{Gr}(k, n)$.
Localized K-theory: $K_{T}(N(n))_{\text {loc }}$ as a $\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right)$-module is identified with:

$$
\mathcal{H}_{\text {phys }}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

generated by \mathcal{O}_{p}.
"Classical" Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

$$
\prod_{j=1}^{n}\left(x_{i}-a_{j}\right)=0, \quad i=1, \ldots, k, \text { with } x_{i} \neq x_{j}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Quasimaps

Quasimap $f: \mathcal{C}=\mathbb{P}^{1} \rightarrow N_{k, n}$ is the following collection of data:

- vector bundle \mathscr{V} on \mathbb{P}^{1} of rank k.
- section $f \in H^{0}\left(\mathbb{P}^{1}, \mathscr{M} \oplus \mathscr{M}^{*} \otimes \hbar\right)$, satisfying the condition $\mu=0$, where $\mathscr{M}=\operatorname{Hom}(\mathscr{V}, \mathscr{W})$, so that \mathscr{W} is a trivial bundle of rank n.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

$$
e v_{p}(f)=f(p) \in\left[\mu^{-1}(0) / G L(V)\right] \supset N_{k, n}
$$

Quasimap is stable if $f(p) \in N_{k, n}$ for all but finitely many points, known as singularities of quasimap.

For the moduli space of stable quasimaps
QMM(N1,n)
only \mathscr{F} and f vary, while \mathcal{C} and \mathscr{W} remain the same.

Quasimaps

Quasimap $f: \mathcal{C}=\mathbb{P}^{1} \rightarrow N_{k, n}$ is the following collection of data:

- vector bundle \mathscr{V} on \mathbb{P}^{1} of rank k.
- section $f \in H^{0}\left(\mathbb{P}^{1}, \mathscr{M} \oplus \mathscr{M}^{*} \otimes \hbar\right)$, satisfying the condition $\mu=0$, where $\mathscr{M}=\operatorname{Hom}(\mathscr{V}, \mathscr{W})$, so that \mathscr{W} is a trivial bundle of rank n.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

$$
e v_{p}(f)=f(p) \in\left[\mu^{-1}(0) / G L(V)\right] \supset N_{k, n}
$$

Quasimap is stable if $f(p) \in N_{k, n}$ for all but finitely many points, known as singularities of quasimap.

For the moduli space of stable quasimaps
QM(N1,)
only \mathscr{F} and f vary, while \mathcal{C} and \mathscr{W} remain the same.

Quasimaps

Quasimap $f: \mathcal{C}=\mathbb{P}^{1} \rightarrow N_{k, n}$ is the following collection of data:

- vector bundle \mathscr{V} on \mathbb{P}^{1} of rank k.
- section $f \in H^{0}\left(\mathbb{P}^{1}, \mathscr{M} \oplus \mathscr{M}^{*} \otimes \hbar\right)$, satisfying the condition $\mu=0$, where $\mathscr{M}=\operatorname{Hom}(\mathscr{V}, \mathscr{W})$, so that \mathscr{W} is a trivial bundle of rank n.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

$$
e v_{p}(f)=f(p) \in\left[\mu^{-1}(0) / G L(V)\right] \supset N_{k, n}
$$

Quasimap is stable if $f(p) \in N_{k, n}$ for all but finitely many points, known as singularities of quasimap.

For the moduli space of stable quasimaps

$$
Q M\left(N_{k, n}\right)
$$

only \mathscr{V} and f vary, while \mathcal{C} and \mathscr{W} remain the same.

$$
\operatorname{deg}(f):=\operatorname{deg}(\mathscr{V}), \quad Q M\left(N_{k, n}\right)=\sqcup_{d \geq 0} Q M^{d}\left(N_{k, n}\right)
$$

Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathcal{C} \times S^{1}$:

Gauge field theory with gauge group $G=\times_{\substack{\text { rankg } \\ i=1}} U\left(v_{i}\right)$ defined by a certain action functional $S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)$.
$=A_{\{i\}}: U\left(v_{i}\right)$-connections (gauge fields)

- $\phi_{\{\alpha\}}$: sections of associated vector $U\left(v_{i}\right)$-bundles, corresponding to the quiver data (matter fields)

Physicists compute path integrals:

$$
\langle F\rangle=\int\left[d \phi_{\{\alpha\}}\right]\left[d A_{\{i\}}\right] e^{-S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)} F\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)
$$

Minima of S : Moduli of Higgs vacua \longleftrightarrow Nakajima quiver variety:

$$
T^{*} \lambda c \mid I \prime \prime G=\mu^{-1}(0) / / G=N
$$

where $\mu=0$ is a momentum map (low energy configuration) condition.

Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathcal{C} \times S^{1}$:

Gauge field theory with gauge group $G=\times_{i=1}^{r a n k g} U\left(v_{i}\right)$ defined by a certain action functional $S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)$.

- $A_{\{i\}}: U\left(v_{i}\right)$-connections (gauge fields)
- $\phi_{\{\alpha\}}$: sections of associated vector $U\left(v_{i}\right)$-bundles, corresponding to the quiver data (matter fields)

Physicists compute path integrals:

Minima of S : Moduli of Higgs vacua \longleftrightarrow Nakajima quiver variety:

where $\mu=0$ is a momentum map (low energy configuration) condition.

Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathcal{C} \times S^{1}$:

Gauge field theory with gauge group $G=\times_{i=1}^{\text {rankg }} U\left(v_{i}\right)$ defined by a certain action functional $S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)$.

- $A_{\{i\}}: U\left(v_{i}\right)$-connections (gauge fields)
- $\phi_{\{\alpha\}}$: sections of associated vector $U\left(v_{i}\right)$-bundles, corresponding to the quiver data (matter fields)

Physicists compute path integrals:

$$
\langle F\rangle=\int\left[d \phi_{\{\alpha\}}\right]\left[d A_{\{i\}}\right] e^{-S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)} F\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)
$$

Minima of S : Moduli of Higgs vacua \longleftrightarrow Nakajima quiver variety:

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathcal{C} \times S^{1}$:

Gauge field theory with gauge group $G=\times_{i=1}^{\text {rankg }} U\left(v_{i}\right)$ defined by a certain action functional $S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)$.

- $A_{\{i\}}: U\left(v_{i}\right)$-connections (gauge fields)
- $\phi_{\{\alpha\}}$: sections of associated vector $U\left(v_{i}\right)$-bundles, corresponding to the quiver data (matter fields)

Physicists compute path integrals:

$$
\langle F\rangle=\int\left[d \phi_{\{\alpha\}}\right]\left[d A_{\{i\}}\right] e^{-S\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)} F\left(\phi_{\{\alpha\}}, A_{\{i\}}\right)
$$

Minima of S : Moduli of Higgs vacua \longleftrightarrow Nakajima quiver variety:

$$
T^{*} \mathcal{M} / / / / / G=\mu^{-1}(0) / / G=N
$$

where $\mu=0$ is a momentum map (low energy configuration) condition.

SUSY path integral and enumerative computations

$\langle F\rangle$ corresponds to weighted K-theoretic counts of quasimaps:

Euler characteristics of equivariant pushforwards of sheaves of quasimap moduli space $Q M\left(N_{k, n}\right)$.

The weight (Kähler) parameter is $Z^{\mathrm{deg}(\mathrm{f})}$, which is exactly twist parameter Z we encountered before.
"Line operators" -traces of holonomy of gauge fields generate quantum K-theory ring, so that the structure constants of algebra are given by:

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

SUSY path integral and enumerative computations

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

The weight (Kähler) parameter is $Z^{\operatorname{deg}(f)}$, which is exactly twist parameter Z we encountered before.
"Line operators"-traces of holonomy of gauge fields generate quantum K-theory ring, so that the structure constants of algebra are given by:

Nekrasov-Shatashvili conjecture and enumerative computations

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz
Conjecture of Nekrasov and Shatashvili '09 (through 3D gauge theory):

Quantum equivariant K - theory ring of quiver variety $=$

Bethe algebra of related spin chain system

Nekrasov-Shatashvili conjecture and enumerative computations

Conjecture of Nekrasov and Shatashvili '09 (through 3D gauge theory):

Quantum equivariant K - theory ring of Nakajima variety $=$

Bethe algebra of related spin chain system

Okounkov'15:
q - difference equations for counting (vertex) functions $=$ qKZ equations + dynamical equations

What are we counting?
Quasimaps to quiver varieties:
$\left\{\begin{array}{l}q,\left\{a_{i}\right\} \rightarrow \text { equivariant parameters } \\ \left\{z_{i}\right\} \rightarrow \text { "counting" (Kähler) parameters }\end{array}\right.$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Quantum tautological classes for $T^{*} \operatorname{Gr}(k, n)$

Deformation of the product: $A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \otimes_{d} B z^{d}$.
Quantum tautological classes - deformations of $\tau=T^{*} \mathcal{M} \times \tau(V)$:

$$
\hat{\tau}(z)=\tau+\sum_{d=1}^{\infty} \tau_{d} z^{d} \in K_{T}(N(n))[[z]]
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Theorem.

- The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau\left(x_{1}, \ldots, x_{k}\right)$ evaluated at the solutions of Bethe equations:

$$
\prod_{j=1}^{n} \frac{x_{i}-a_{j}}{\hbar a_{j}-x_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{x_{i} \hbar-x_{j}}{x_{i}-x_{j} \hbar}, \quad i=1, \ldots, k
$$

- Baxter Q-operator: $Q(u)=\sum_{i=1}^{k}(-1)^{i} u^{k-i}\left[\Lambda^{i} V\right](z) \circledast$
P. Pushkar, A. Smirnov, A.Z.,

Baxter Q-operator from quantum K-theory, Adv. Math. '20

Further developments

Introduction

- Generalization to type A_{n}, also connection to classical many body-systems for $T^{*} F I$.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z.,

Quantum K-theory of Quiver Varieties and Many-Body Systems, Selecta Math. '21

Quantum Integrable models

Enumerative geometry and Bethe ansatz

Further developments

Introduction

- Generalization to type A_{n}, also connection to classical many body-systems for $T^{*} \mathrm{Fl}$.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z.,

Quantum K-theory of Quiver Varieties and Many-Body Systems, Selecta Math. '21

- Connection to quantum many-body systems (as in Givental-Lee) in the context of partial flags through the works of Cherednik and Matsuo.
P. Koroteev, A.Z., $q K Z / t R S$ Duality via Quantum K-Theoretic Counts, Math. Res. Lett. '21
- 3D mirror symmetry for instanton spaces and their cyclic quiver generalizations

Further developments

Introduction

- Generalization to type A_{n}, also connection to classical many body-systems for $T^{*} \mathrm{Fl}$.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z.,

Quantum K-theory of Quiver Varieties and Many-Body Systems, Selecta Math. '21

- Connection to quantum many-body systems (as in Givental-Lee) in the context of partial flags through the works of Cherednik and Matsuo.
P. Koroteev, A.Z., qKZ/tRS Duality via Quantum K-Theoretic Counts, Math. Res. Lett. '21
- 3D mirror symmetry for instanton spaces and their cyclic quiver generalizations
P. Koroteev, A. Z.,

3d Mirror Symmetry for Instanton Moduli Spaces, arXiv:2105.00588

Introduction

Quantum Integrable
Short exact sequence of bundles:

$$
\begin{gathered}
0 \rightarrow V \rightarrow W \rightarrow \hbar \otimes V^{\vee} \rightarrow 0 \\
Q(u)=\sum_{i=1}^{k}(-1)^{i} u^{k-i}\left[\Lambda^{i} V\right](z) \circledast \\
\widetilde{Q}(u)=\sum_{i=1}^{k}(-1)^{i} u^{k-i}\left[\Lambda^{i} V^{\vee}\right](z) \circledast
\end{gathered}
$$

Eigenvalues of these two operators are related via QQ-system:

$$
\widetilde{Q}(\hbar u) Q(u)-z Q(\hbar u) \widetilde{Q}(u)=\prod_{i}\left(u-a_{i}\right)
$$

Equivalent to Bethe ansatz equations.

(G, \hbar)-connections

$$
M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \text { such that } u \rightarrow \hbar u
$$

Let \mathcal{F}_{G} be a G-bundle over \mathbb{P}^{1} :

- G - simple simply connected Lie group associated to Lie algebra g.
- \mathcal{F}_{G}^{\hbar} is a pushforward w.r.t. M_{\hbar}.
(G, \hbar)-connection: a meromorphic section of $\operatorname{Hom}_{\mathcal{P}_{\mathbb{P}^{1}}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$.
Locally:
\hbar-gauge transformations of (G, \hbar)-connection:

$$
A(u) \rightarrow g^{(\hbar u)} A^{\prime}(u) g^{-1}(u)
$$

where $A(u) \in G(u)=G(\mathbb{C}(u))$.

Compare it with standard gauge transformations:

$$
\partial_{u}+A(u) \rightarrow g(u)\left(\partial_{u}+A(u)\right) g^{-1}(u)
$$

where $A(u) \in \mathfrak{g}(u)$.

(G, \hbar)-connections

$$
M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \text { such that } u \rightarrow \hbar u
$$

Let \mathcal{F}_{G} be a G-bundle over \mathbb{P}^{1} :

- G - simple simply connected Lie group associated to Lie algebra \mathfrak{g}.
- \mathcal{F}_{G}^{\hbar} is a pushforward w.r.t. M_{\hbar}.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and (G, \hbar)-opers
(G, \hbar)-connection: a meromorphic section of $\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$.
Locally:
\hbar-gauge transformations of (G, \hbar)-connection:

$$
A(u) \rightarrow g(\hbar u) A(u) g^{-1}(u)
$$

where $A(u) \in G(u)=G(\mathbb{C}(u))$.

Compare it with standard gauge transformations:

$$
\partial_{u}+A(u) \rightarrow g(u)\left(\partial_{u}+A(u)\right) g^{-1}(u)
$$

\square
where $A(u) \in \mathfrak{g}(u)$

(G, \hbar)-connections

$$
M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \text { such that } u \rightarrow \hbar u
$$

Let \mathcal{F}_{G} be a G-bundle over \mathbb{P}^{1} :

- G - simple simply connected Lie group associated to Lie algebra \mathfrak{g}.
- \mathcal{F}_{G}^{\hbar} is a pushforward w.r.t. M_{\hbar}.

Introduction

Quantum Integrable models

Enumerative geometry
and Bethe ansatz
QQ-systems and
(G, \hbar)-opers
Applications
(G, \hbar)-connection: a meromorphic section of $\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$.
Locally:
\hbar-gauge transformations of (G, \hbar)-connection:

$$
A(u) \rightarrow g(\hbar u) A(u) g^{-1}(u)
$$

where $A(u) \in G(u)=G(\mathbb{C}(u))$.

Compare it with standard gauge transformations: $\partial_{u}+A(u) \rightarrow g(u)\left(\partial_{u}+A(u)\right) g^{-1}(u)$,

(G, \hbar)-connections

$$
M_{\hbar}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \text { such that } u \rightarrow \hbar u
$$

Let \mathcal{F}_{G} be a G-bundle over \mathbb{P}^{1} :

- G - simple simply connected Lie group associated to Lie algebra \mathfrak{g}.
- \mathcal{F}_{G}^{\hbar} is a pushforward w.r.t. M_{\hbar}.

Introduction

Quantumt integrable models

Enumerative geometry
and Bethe ansatz
QQ-systems and
(G, \hbar)-opers
Applications
(G, \hbar)-connection: a meromorphic section of $\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{\hbar}\right)$.
Locally:
\hbar-gauge transformations of (G, \hbar)-connection:

$$
A(u) \rightarrow g(\hbar u) A(u) g^{-1}(u)
$$

where $A(u) \in G(u)=G(\mathbb{C}(u))$.

Compare it with standard gauge transformations:

$$
\partial_{u}+A(u) \rightarrow g(u)\left(\partial_{u}+A(u)\right) g^{-1}(u)
$$

where $A(u) \in \mathfrak{g}(u)$.

Miura (G, \hbar)-opers

Miura (G, \hbar)-oper is a quadruple : $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{+}}, \mathcal{F}_{B_{-}}\right)$, such that:

- A is (G, \hbar) - connection
- Oper condition: $\mathcal{F}_{B_{+}}: A$ lies in the Coxeter cell $B_{+} c B_{+}$
- Miura condition: $\mathcal{F}_{B_{-}}$: preserved by A
(G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(h u) Z v^{-1}(u), \text { where } Z=\prod \widetilde{c}_{i} \in H, v(u) \in G(u)
$$

Example: $S L(r+1)$

Z - diagonal

Regular singularities: $\left\{\Lambda_{i}(u)\right\}_{i=1}^{r}$-polynomials on subdiagonal.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and (G, \hbar)-opers

Applications

Miura (G, \hbar)-opers

Miura (G, \hbar)-oper is a quadruple : $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{+}}, \mathcal{F}_{B_{-}}\right)$, such that:

- A is (G, \hbar) - connection
- Oper condition: $\mathcal{F}_{B_{+}}: A$ lies in the Coxeter cell $B_{+} c B_{+}$
- Miura condition: $\mathcal{F}_{B_{-}}$: preserved by A
(G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely
$A(u)=v(h u) Z v^{-1}(u)$, where $Z=\prod \zeta_{i}^{\alpha_{i}} \in H, v(u) \in G(u)$.

Example: $S L(r+1)$

Z - diagonal

Regular singularities: $\left\{\Lambda_{i}(u)\right\}_{i=1}^{r}-$ polynomials on subdiagonal.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and (G, \hbar)-opers

Applications

Miura (G, \hbar)-opers

Miura (G, \hbar)-oper is a quadruple : $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{+}}, \mathcal{F}_{B_{-}}\right)$, such that:

- A is (G, \hbar) - connection
- Oper condition: $\mathcal{F}_{B_{+}}: A$ lies in the Coxeter cell $B_{+} c B_{+}$
- Miura condition: $\mathcal{F}_{B_{-}}$: preserved by A
(G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely
$A(u)=v(h u) Z v^{-1}(u)$, where $Z=\prod_{i}^{\alpha_{i}} \in H, v(u) \in G(u)$

Example: $S L(r+1)$

Z - diagonal

Regular singularities: $\left\{\Lambda_{i}(u)\right\}_{i=1}^{r}-$ polynomials on subdiagonal.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and (G, \hbar)-opers

Applications

Miura (G, \hbar)-opers

Miura (G, \hbar)-oper is a quadruple : $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{+}}, \mathcal{F}_{B_{-}}\right)$, such that:

- A is (G, \hbar) - connection
- Oper condition: $\mathcal{F}_{B_{+}}: A$ lies in the Coxeter cell $B_{+} c B_{+}$
- Miura condition: $\mathcal{F}_{B_{-}}$: preserved by A
(G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(\hbar u) Z v^{-1}(u), \text { where } Z=\prod_{i} \zeta_{i}^{\check{\alpha}_{i}} \in H, v(u) \in G(u) .
$$

Introduction

Quantumi Integrable models

Example: $S L(r+1)$

Miura (G, \hbar)-opers

Miura (G, \hbar)-oper is a quadruple : $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{+}}, \mathcal{F}_{B_{-}}\right)$, such that:

- A is (G, \hbar) - connection
- Oper condition: $\mathcal{F}_{B_{+}}: A$ lies in the Coxeter cell $B_{+} c B_{+}$
- Miura condition: $\mathcal{F}_{B_{-}}$: preserved by A
(G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(\hbar u) Z v^{-1}(u), \text { where } Z=\prod_{i} \zeta_{i}^{\check{\alpha}_{i}} \in H, v(u) \in G(u) .
$$

Example: $S L(r+1)$

$$
A \in\left[\begin{array}{ccccc}
* & 0 & 0 & \cdots & 0 \\
* & * & 0 & \cdots & 0 \\
0 & * & * & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & * & *
\end{array}\right] \quad Z-\text { diagonal }
$$

Introduction

Quantumi Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Miura (G, \hbar)-opers

Introduction

Miura (G, \hbar)-oper is a quadruple : $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{+}}, \mathcal{F}_{B_{-}}\right)$, such that:

- A is (G, \hbar) - connection
- Oper condition: $\mathcal{F}_{B_{+}}: A$ lies in the Coxeter cell $B_{+} c B_{+}$
- Miura condition: $\mathcal{F}_{B_{-}}$: preserved by A
(G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(\hbar u) Z v^{-1}(u), \text { where } Z=\prod_{i} \zeta_{i}^{\check{\alpha}_{i}} \in H, v(u) \in G(u) .
$$

Example: $S L(r+1)$

$$
A \in\left[\begin{array}{ccccc}
* & 0 & 0 & \cdots & 0 \\
* & * & 0 & \cdots & 0 \\
0 & * & * & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & * & *
\end{array}\right] \quad Z-\text { diagonal }
$$

Regular singularities: $\left\{\Lambda_{i}(u)\right\}_{i=1}^{r}$-polynomials on subdiagonal.

Miura (G, \hbar)-opers and \hbar-Langlands duality

Theorem.

There is a one-to-one correspondence between the set of nondegenerate Z-twisted Miura (G, \hbar)-opers and the set of nondegenerate polynomial solutions of the $Q Q$-system:

$$
\begin{aligned}
& \widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u)= \\
& \Lambda_{i}(u) \prod_{j>i}\left[Q_{+}^{j}(\hbar u)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}, \quad i=1, \ldots, r,
\end{aligned}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and (G, \hbar)-opers

Applications

Miura (G, \hbar)-opers and \hbar-Langlands duality

Theorem.

There is a one-to-one correspondence between the set of nondegenerate Z-twisted Miura (G, \hbar)-opers and the set of nondegenerate polynomial solutions of the $Q Q$-system:

$$
\begin{aligned}
& \widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(\hbar u)-\xi_{i} Q_{-}^{i}(\hbar u) Q_{+}^{i}(u)= \\
& \Lambda_{i}(u) \prod_{j>i}\left[Q_{+}^{j}(\hbar u)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(u)\right]^{-a_{j i}}, \quad i=1, \ldots, r,
\end{aligned}
$$

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

$$
\begin{aligned}
& \text { Where } \widetilde{\xi}_{i}=\zeta_{i}^{-1} \prod_{j>i} \zeta_{j}^{-a_{j i}}, \xi_{i}=\zeta_{i} \prod_{j<i} \zeta_{j}^{a_{j i}} \text {. } \\
& \text { P. Koroteev, D. Sage, A.Z., } \\
& \text { (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality,Comm. Math. Phys. '21 } \\
& \text { E. Frenkel, P. Koroteev, D. Sage, A.Z., } \\
& \text { q-Opers, } Q Q \text {-Systems, and Bethe Ansatz, to appear in J. Eur. Math. Soc., arXiv:2002.07344 }
\end{aligned}
$$

In ADE case this QQ-system correspond to the Bethe ansatz equations. Beyond simply-laced case: "folded integrable models", based on $\widehat{{ }^{g}}$, see E. Frenkel, D. Hernandez, N. Reshetikhin,

Applications

- Cluster algebras in Bethe ansatz through the notion of (G, \hbar)-Wronskians: QQ-systems via generalized minors of Fomin, Zelevinsky.
P. Koroteev, A.Z.,
q-Opers, $Q Q$-systems, and Bethe Ansatz II: Generalized Minors, Crelle J.'23
- Quantum-classical duality: relation between classical multiparticle systems and spin chain systems through the natural coordinate change on (G, \hbar)-opers.
P. Koroteev, P. Pushkar, A. Smimov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,
\qquad
\qquad
\qquad
- 3D mirror symmetry: pairs of symplectic resolutions with similar properties. Coulomb and Higgs branches of 3D gauge theories. Enumerative geometry: $\left\{a_{i}\right\}-v s\left\{z_{i}\right\}-q K Z$ equations.
P. Koroteev, A.Z., Toroidal q-Opers, J. Inst. Math. Jussieu' 23
- Relation to quantum q-Langlands correspondence: (G, \hbar)-opers \rightarrow scalar differential operators for $q \rightarrow 1$ limit of conformal blocks for $W_{a . t}\left({ }^{L} \mathfrak{g}\right)$.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Applications

- Cluster algebras in Bethe ansatz through the notion of (G, \hbar)-Wronskians: QQ-systems via generalized minors of Fomin, Zelevinsky.
P. Koroteev, A.Z.,
q-Opers, $Q Q$-systems, and Bethe Ansatz II: Generalized Minors, Crelle J.'23
- Quantum-classical duality: relation between classical multiparticle systems and spin chain systems through the natural coordinate change on (G, \hbar)-opers.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,

Selecta Math.' 21 ;
P. Koroteev, D. Sage, A.Z., (SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality, Commun. Math. Phys. '21

- 3D mirror symmetry: pairs of symplectic resolutions with similar properties. Coulomb and Higgs branches of 3D gauge theories. Enumerative geometry: $\left\{a_{i}\right\}-v s\left\{z_{i}\right\}-q K Z$ equations.
\qquad
\qquad
- Relation to quantum q-Langlands correspondence: (G, \hbar)-opers \rightarrow scalar differential operators for $q \rightarrow 1$ limit of conformal blocks for $W_{q . t}\left(L_{g}\right)$.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Applications

- Cluster algebras in Bethe ansatz through the notion of (G, \hbar)-Wronskians: QQ-systems via generalized minors of Fomin, Zelevinsky.
P. Koroteev, A.Z.,
q-Opers, $Q Q$-systems, and Bethe Ansatz II: Generalized Minors, Crelle J.'23
- Quantum-classical duality: relation between classical multiparticle systems and spin chain systems through the natural coordinate change on (G, \hbar)-opers.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,

Selecta Math.' 21 ;
P. Koroteev, D. Sage, A.Z., (SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality,

Commun. Math. Phys. '21

- 3D mirror symmetry: pairs of symplectic resolutions with similar properties. Coulomb and Higgs branches of 3D gauge theories. Enumerative geometry: $\left\{a_{i}\right\}-\mathrm{vs}\left\{z_{i}\right\}-\mathrm{qKZ}$ equations.

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

- Relation to quantum q-Langlands correspondence: (G, \hbar)-opers \rightarrow scalar differential operators for $q \rightarrow 1$ limit of conformal blocks for $W_{\text {q.t }}\left(L_{g}\right)$.
P. Koroteev, A. Z., Toroidal q-Opers, J. Inst. Math. Jussieu' 23
\qquad
\square

Applications

- Cluster algebras in Bethe ansatz through the notion of (G, \hbar)-Wronskians: QQ-systems via generalized minors of Fomin, Zelevinsky.
P. Koroteev, A.Z.,
q-Opers, $Q Q$-systems, and Bethe Ansatz II: Generalized Minors, Crelle J.'23
- Quantum-classical duality: relation between classical multiparticle systems and spin chain systems through the natural coordinate change on (G, \hbar)-opers.
P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems,

Selecta Math.' 21 ;
P. Koroteev, D. Sage, A.Z., $(S L(N), q)$-opers, the q-Langlands correspondence, and quantum/classical duality, Commun. Math. Phys. '21

- 3D mirror symmetry: pairs of symplectic resolutions with similar properties. Coulomb and Higgs branches of 3D gauge theories. Enumerative geometry: $\left\{a_{i}\right\}-\mathrm{vs}\left\{z_{i}\right\}-\mathrm{qKZ}$ equations.
P. Koroteev, A.Z., Toroidal q-Opers, J. Inst. Math. Jussieu'23
P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces, Commun. Math. Phys.'23
- Relation to quantum q-Langlands correspondence: (G, \hbar)-opers \rightarrow scalar differential operators for $q \rightarrow 1$ limit of conformal blocks for $W_{q, t}\left({ }^{L} \mathfrak{g}\right)$.

Anton M. Zeitlin

Introduction

Quantum Integrable models

Enumerative geometry and Bethe ansatz

QQ-systems and
(G, \hbar)-opers
Applications

Thank you!

