The geometric meaning of Bethe equations

Quaritum integrability
Quantum K-theory
*-opers and Bethe ansatz

Anton M. Zeitlin

Louisiana State University, Department of Mathematics

AMS Sectional Meeting: Special Session on Geometric Methods in Representation Theory
UC Riverside
November, 2019

Some history of quantum integrable systems and Bethe ansatz

Exactly solvable models of statistical physics: spin chains, vertex models
1930s: Hans Bethe: Bethe ansatz solution of Heisenberg model
1960-70s: R.J. Baxter, C.N. Yang: Yang-Baxter equation, Baxter operator

1980s: Development of "QISM" by Leningrad school leading to the discovery of quantum groups by Drinfeld and Jimbo

Since 1990s: textbook subject and an established area of mathematics and physics.

Geometric interpretations

- Enumerative geometry: quantum K-theory

Generalization of quantum cohomology in the early 2000s by A. Givental, Y.P. Lee and collaborators. Recently big progress in this

Outline

Quantum Integrability direction by A. Okounkov and his school.
P.Pushkar, A. Smirnov, A.Z., Baxter Q-operator from quantum K-theory, arXiv:1612.08723
P. Koroteev, P.Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems, arXiv:1705.10419

```
Multiplicative connections, q-opers
q-deformed version of the classic example of geometric Langlands
correspondence, studied in detail by B. Feigin, E. Frenkel, N.
Reshetkhin: correspondence between opers (certain connections
with regular singularities) and Gaudin models.
P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands
correspondence, and quantum/classical duality, arXiv:1811.09937
E. Frenkel, P. Koroteev, D. Sage, A.Z., q-opers, QQ-systemm and
Bethe ansatz, to appear in 2019
```


Geometric interpretations

- Enumerative geometry: quantum K-theory

Generalization of quantum cohomology in the early 2000s by A. Givental, Y.P. Lee and collaborators. Recently big progress in this

Outline

Quantum Integrability direction by A. Okounkov and his school.
P.Pushkar, A. Smirnov, A.Z., Baxter Q-operator from quantum K-theory, arXiv:1612.08723
P. Koroteev, P.Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems, arXiv:1705.10419

- Multiplicative connections, q-opers
q-deformed version of the classic example of geometric Langlands correspondence, studied in detail by B. Feigin, E. Frenkel, N. Reshetkhin: correspondence between opers (certain connections with regular singularities) and Gaudin models.
P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands correspondence, and quantum/classical duality, arXiv:1811.09937
E. Frenkel, P. Koroteev, D. Sage, A.Z., q-opers, $Q Q$-systems and Bethe ansatz, to appear in 2019

Outline

Outline
Quantum Integrability Quantum K-theory

F-opers and Bethe ansatz

Quantum equivariant K-theory and Bethe ansatz
\hbar-opers and Bethe ansatz

Loop algebras and evaluation modules

Outline

Quantum Integrability
Let us consider Lie algebra \mathfrak{g}.

Quantum K-theory
\hbar-opers and Bethe ansatz

The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

The following representations, known as evaluation modules form a tensor category of $\hat{\mathfrak{g}}$:

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right),
$$

where

- V_{i} are representations of \mathfrak{g}
- a_{i} are values for t

Loop algebras and evaluation modules

Outline

Quantum Integrability Quantum K-theory
\hbar-opers and Bethe ansatz

Let us consider Lie algebra \mathfrak{g}.
The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

The following representations, known as evaluation modules form a tensor category of $\hat{\mathfrak{g}}$:

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right),
$$

Loop algebras and evaluation modules

Outline

Quantum Integrability
Let us consider Lie algebra \mathfrak{g}.
The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

The following representations, known as evaluation modules form a tensor category of \mathfrak{g} :

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

where

- V_{i} are representations of \mathfrak{g}
- a_{i} are values for t

Quantum groups

Quantum group

$$
U_{\hbar}(\hat{\mathfrak{g}})
$$

is a deformation of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right)$:

$$
V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

which is a rational function of a_{1}, a_{2}, satisfying Yang-Baxter equation:

The generators of $U_{\hbar}(\hat{\mathfrak{g}})$ emerge as matrix elements of R-matrices (the so-called FRT construction).

Integrability and Baxter algebra

Source of integrability: commuting transfer matrices, generating Baxter algebra which are weighted traces of

$$
\tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\text {phys }}
$$

Outline

Quantum Integrability Quantum K-theory

Baxter algebra and Integrability

Outline

Quantum Integrability
Source of integrability: commuting transfer matrices, generating Baxter algebra which are weighted traces of

$$
\tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\text {phys }}
$$

over auxiliary $W(u)$ space:

$$
T_{w}(u)=\operatorname{Tr}_{W(u)}\left((Z \otimes 1) \tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}\right)
$$

Here $Z \in e^{\mathfrak{h}}$, where $\mathfrak{h} \in \mathfrak{g}$ are diagonal matrices.

Outline

Quantum Integrability Quantum K-theory

Integrability:
\hbar-opers and Bethe ansatz

$$
\left[T_{w^{\prime}}\left(u^{\prime}\right), T_{w}(u)\right]=0
$$

There are special transfer matrices is called Baxter Q-operators. Such operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize $\left\{T_{W}(u)\right\}$ simultaneously.

Outline

Quantum Integrability Quantum K-theory

Integrability:

$$
\left[T_{w^{\prime}}\left(u^{\prime}\right), T_{w}(u)\right]=0
$$

There are special transfer matrices is called Baxter Q-operators. Such operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize $\left\{T_{w}(u)\right\}$ simultaneously.

Outline

Quantum Integrability

Integrability:

$$
\left[T_{w^{\prime}}\left(u^{\prime}\right), T_{w}(u)\right]=0
$$

There are special transfer matrices is called Baxter Q-operators. Such operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize $\left\{T_{W}(u)\right\}$ simultaneously.

$\mathfrak{g}=\mathfrak{s l}(2): X X Z$ spin chain

Anton Zeitlin

Outline

Quantum Integrability

$$
\mathcal{H} x x z=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

States:

Here \mathbb{C}^{2} stands for 2-dimensional representation of $U_{\hbar}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

Algebraic method to diagonalize transfer matrices:

Algebraic Bethe ansatz

as a part of Quantum Inverse Scattering Method developed in the 1980s.

Outline

Quantum Integrability
Textbook example (and main example in this talk) is XXZ Heisenberg spin chain:

$$
\mathcal{H}_{x x z}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

States:

$$
\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow
$$

Here \mathbb{C}^{2} stands for 2-dimensional representation of $U_{\hbar}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

Algebraic method to diagonalize transfer matrices: Algebraic Bethe ansatio
as a part of Quantum Inverse Scattering Method developed in the
1980s.

Outline

Quantum Integrability

$$
\mathcal{H}_{x x z}=\mathbb{C}^{2}\left(a_{1}\right) \otimes \mathbb{C}^{2}\left(a_{2}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{n}\right)
$$

States:

$$
\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow
$$

Here \mathbb{C}^{2} stands for 2-dimensional representation of $U_{\hbar}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

Algebraic method to diagonalize transfer matrices:
Algebraic Bethe ansatz
as a part of Quantum Inverse Scattering Method developed in the 1980s.

Bethe equations and Q-operator

Outline

Quantum Integrability Quantum K-theory

The eigenvalues are generated by symmetric functions of Bethe roots $\left\{x_{i}\right\}$:

$$
\prod_{j=1}^{n} \frac{x_{i}-a_{j}}{\hbar a_{j}-x_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{x_{i} \hbar-x_{j}}{x_{i}-x_{j} \hbar}, \quad i=1 \cdots k
$$

so that the eigenvalues $\Lambda(u)$ of the Q-operator are the generating
functions for the elementary symmetric functions of Bethe roots:

$$
\Lambda(u)=\prod_{i=1}^{k}\left(1+u \cdot x_{i}\right)
$$

A real challenge is to describe representation-theoretic meaning of Q-operator for general \mathfrak{g} (possibly infinite-dimensional).

Bethe equations and Q-operator

Outline

Quantum Integrability

The eigenvalues are generated by symmetric functions of Bethe roots $\left\{x_{i}\right\}$:

$$
\prod_{j=1}^{n} \frac{x_{i}-a_{j}}{\hbar a_{j}-x_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{x_{i} \hbar-x_{j}}{x_{i}-x_{j} \hbar}, \quad i=1 \cdots k
$$

so that the eigenvalues $\Lambda(u)$ of the Q-operator are the generating functions for the elementary symmetric functions of Bethe roots:

$$
\Lambda(u)=\prod_{i=1}^{k}\left(1+u \cdot x_{i}\right)
$$

A real challenge is to describe representation-theoretic meaning of Q-operator for general \mathfrak{g} (possibly infinite-dimensional).

Bethe equations and Q-operator

Outline

Quantum Integrability

The eigenvalues are generated by symmetric functions of Bethe roots $\left\{x_{i}\right\}$:

$$
\prod_{j=1}^{n} \frac{x_{i}-a_{j}}{\hbar a_{j}-x_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{x_{i} \hbar-x_{j}}{x_{i}-x_{j} \hbar}, \quad i=1 \cdots k
$$

so that the eigenvalues $\Lambda(u)$ of the Q-operator are the generating functions for the elementary symmetric functions of Bethe roots:

$$
\Lambda(u)=\prod_{i=1}^{k}\left(1+u \cdot x_{i}\right)
$$

A real challenge is to describe representation-theoretic meaning of Q-operator for general \mathfrak{g} (possibly infinite-dimensional).

q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations for

$$
\Psi\left(z_{1}, \ldots, z_{k} ; a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)\left[\left[z_{1}, \ldots, z_{k}\right]\right]
$$

known as

Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:
$\left.\psi(q)_{1} \ldots . a_{n},(2)\right)=\left(Z \otimes 10 \ldots\right.$ Q 1) $n_{V_{1}, V_{n} \ldots n_{V_{1}, V_{2}} \psi}$
commuting difference equations in z - variables
Here \{ $z \mathrm{z}\}$ are the components of twist variable Z.

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko,

In $q \rightarrow 1$ limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.

Outline

Quantum Integrability Quantum K-theory

q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations for

$$
\Psi\left(z_{1}, \ldots, z_{k} ; a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)\left[\left[z_{1}, \ldots, z_{k}\right]\right]
$$

Outline

Quantum Integrability Quantum K-theory
known as
Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

$$
\begin{aligned}
& \Psi\left(q a_{1}, \ldots, a_{n},\left\{z_{i}\right\}\right)=(Z \otimes 1 \otimes \cdots \otimes 1) R_{v_{1}, v_{n}} \ldots R_{v_{1}, v_{2}} \Psi \\
& + \\
& \text { commuting difference equations in } z-\text { variables }
\end{aligned}
$$

Here $\left\{z_{i}\right\}$ are the components of twist variable Z.

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko,

In $q \rightarrow 1$ limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.

q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations for

$$
\Psi\left(z_{1}, \ldots, z_{k} ; a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)\left[\left[z_{1}, \ldots, z_{k}\right]\right]
$$

Outline

Quantum Integrability
known as
Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

$$
\begin{aligned}
& \Psi\left(q a_{1}, \ldots, a_{n},\left\{z_{i}\right\}\right)=(Z \otimes 1 \otimes \cdots \otimes 1) R v_{1}, v_{n} \ldots R_{v_{1}, v_{2}} \Psi \\
& + \\
& \text { commuting difference equations in } z-\text { variables }
\end{aligned}
$$

Here $\left\{z_{i}\right\}$ are the components of twist variable Z.

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko, ...

In $q \rightarrow 1$ limit we arrive to an eigenvalue problem. Studying the
asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.

q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations for

$$
\Psi\left(z_{1}, \ldots, z_{k} ; a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)\left[\left[z_{1}, \ldots, z_{k}\right]\right]
$$

Outline

Quantum Integrability Quantum K-theory
known as
Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

$$
\begin{aligned}
& \Psi\left(q a_{1}, \ldots, a_{n},\left\{z_{i}\right\}\right)=(Z \otimes 1 \otimes \cdots \otimes 1) R_{v_{1}, v_{n}} \ldots R_{v_{1}, v_{2}} \Psi \\
& + \\
& \text { commuting difference equations in } z-\text { variables }
\end{aligned}
$$

Here $\left\{z_{i}\right\}$ are the components of twist variable Z.

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko, ...

In $q \rightarrow 1$ limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.

QQ-systems

Outline

Quantum Integrability Quantum K-theory

Another modern view on Bethe ansatz is due to D. Hernandez and E. Frenkel, following earlier papers by V. Bazhanov, S. Lukyanov and A. Zamolodchikov.

Extension of the category of representations of $U_{\hbar}(\hat{\mathfrak{g}})$ by representations of Borel subalgebra give rise to the so-called QQ-systems.

In the case of $U_{\hbar}(\mathfrak{s l}(2))$ the $Q Q$-system is:

$$
z \widetilde{Q}(\hbar u) Q(u)-z^{-1} Q(\hbar u) \widetilde{Q}(u)=\prod_{i}\left(u-a_{i}\right)
$$

Here $Q(u)$ can be viewed as an eigenvalue of the Q -operator.

Key ideas: enumerative geometry of Nakajima varieties

Nekrasov and Shatashvili:

Quantum equivariant $\mathrm{K}-$ theory ring of Nakajima variety $=$ symmetric polynomials in $\mathrm{x}_{\mathrm{i}_{\mathrm{j}}}$ / Bethe equations

Nekrasov and Shatashvili:

Quantum K - theory ring of Nakajima variety $=$ symmetric polynomials in $\mathrm{x}_{\mathrm{i}_{\mathrm{j}}}$ / Bethe equations

Input by Okounkov:
$q-$ difference equations for vertex functions $=$ $q K Z$ equations + dynamical equations
through the study of quasimap moduli spaces for Nakajima varities

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

In the following we will talk about this in the simplest case:

- Nakajima variety: $N=T^{*} \operatorname{Gr}(k, n)$
- Quantum Integrable System: $\mathfrak{s l}(2) \mathrm{XXZ}$ spin chain.

Notation

$$
T^{*} G r(k, n)=N_{k, n}, \quad \sqcup_{k} N_{k, n}=N(n)
$$

Outline

Quantum Integrability

Quantum K-theory

\hbar-opers and Bethe ansatz

As a Nakajima variety:

$$
N_{k, n}=T^{*} M \mid /\| \| / G L(V)=\mu^{-1}(0)_{s} / G L(V)
$$

where

$$
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
$$

Tautological bundles:

$$
\mathcal{V}=T^{*} \mathcal{M} \times V \mid /\|/\| G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W /\|/\| / G L(V)
$$

For any $\tau \in K_{G L(V)}(\cdot)=\Lambda\left(x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots x_{k}^{ \pm 1}\right)$ we introduce a tautological bundle:

$$
\tau=T^{*} \mathcal{M} \times \tau(V) / / / / / G L(V)
$$

Notation

$$
T^{*} G r(k, n)=N_{k, n}, \quad \sqcup_{k} N_{k, n}=N(n) .
$$

As a Nakajima variety:

$$
N_{k, n}=T^{*} \mathcal{M} / / / / / / G L(V)=\mu^{-1}(0)_{s} / G L(V)
$$

where

$$
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
$$

Tautological bundles:

$$
\mathcal{V}=T^{*} \mathcal{M} \times V /\|/\| / G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W /\|/\| / G L(V)
$$

For any $\tau \in K_{G L(V)}(\cdot)=\Lambda\left(x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots x_{k}^{ \pm 1}\right)$ we introduce a tautological bundle:

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

Notation

$$
T^{*} \operatorname{Gr}(k, n)=N_{k, n}, \quad \sqcup_{k} N_{k, n}=N(n) .
$$

As a Nakajima variety:

$$
N_{k, n}=T^{*} \mathcal{M} / / / / / G L(V)=\mu^{-1}(0)_{s} / G L(V)
$$

where

$$
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
$$

Tautological bundles:

$$
V=T^{*} \mathcal{M} \times V / / / / / G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W / / / / / G L(V)
$$

For any $\tau \in K_{G L(V)}(\cdot)=\Lambda\left(x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots x_{k}^{ \pm 1}\right)$ we introduce a tautological bundle:

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

Notation

$$
T^{*} \operatorname{Gr}(k, n)=N_{k, n}, \quad \sqcup_{k} N_{k, n}=N(n) .
$$

As a Nakajima variety:

$$
N_{k, n}=T^{*} \mathcal{M} / / / / / G L(V)=\mu^{-1}(0)_{s} / G L(V)
$$

where

$$
T^{*} \mathcal{M}=\operatorname{Hom}(V, W) \oplus \operatorname{Hom}(W, V)
$$

Tautological bundles:

$$
\nu=T^{*} \mathcal{M} \times V / / / / G L(V), \quad \mathcal{W}=T^{*} \mathcal{M} \times W / / / / / G L(V)
$$

For any $\tau \in K_{G L(V)}(\cdot)=\Lambda\left(x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots x_{k}^{ \pm 1}\right)$ we introduce a tautological bundle:

$$
\tau=T^{*} \mathcal{M} \times \tau(V) / / / / / G L(V)
$$

Outline

Quantumt Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

Tori, Fixed points and Bethe roots

Torus action:

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Denote $\mathcal{A}:=\mathbb{Q}\left(a_{1}, \ldots, a_{n}, h\right), R:=\mathbb{Z}\left(a_{1}, \ldots, a_{n}, \hbar\right)$, then localized K-theory is:

$$
K_{T}(N(n))_{\text {loc }}=K_{T}(N(n)) \otimes_{R} \mathcal{A}=\sum_{k=0}^{n} K_{T}\left(N_{k, n}\right) \otimes_{R} \mathcal{A}
$$

is a 2^{n}-dimensional \mathcal{A}-vector space (Hilbert space for spin chain), spanned by \mathcal{O}_{p}.

Classical Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

$$
\prod_{j=1}^{n}\left(x_{i}-a_{j}\right)=0, \quad i=1, \ldots, k, \text { with } x_{i} \neq x_{j}
$$

Outline

Quantum Integrability

Quantum K-theory

\hbar-opers and Bethe ansatz

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W,
$$

Full torus : $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Denote $\mathcal{A}:=\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right), R:=\mathbb{Z}\left(a_{1}, \ldots, a_{n}, \hbar\right)$, then localized K-theory is:

is a 2^{n}-dimensional \mathcal{A}-vector space (Hilbert space for spin chain), spanned by \mathcal{O}_{p}.

Classical Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W,
$$

Full torus : $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Denote $\mathcal{A}:=\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right), R:=\mathbb{Z}\left(a_{1}, \ldots, a_{n}, \hbar\right)$, then localized K-theory is:

is a 2^{n}-dimensional \mathcal{A}-vector space (Hilbert space for spin chain), spanned by \mathcal{O}_{p}.

Classical Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

k, with $x_{i} \neq x_{j}$

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W,
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Outline

Quantumt Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Denote $\mathcal{A}:=\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right), R:=\mathbb{Z}\left(a_{1}, \ldots, a_{n}, \hbar\right)$, then localized K-theory is:

$$
K_{T}(N(n))_{\text {loc }}=K_{T}(N(n)) \otimes_{R} \mathcal{A}=\sum_{k=0}^{n} K_{T}\left(N_{k, n}\right) \otimes_{R} \mathcal{A}
$$

is a 2^{n}-dimensional \mathcal{A}-vector space (Hilbert space for spin chain), spanned by \mathcal{O}_{p}.

Classical Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

Tori, Fixed points and Bethe roots

Torus action:

$$
A=\mathbb{C}_{a_{1}}^{\times} \times \cdots \times \mathbb{C}_{a_{n}}^{\times} \circlearrowright W,
$$

Full torus: $T=A \times \mathbb{C}_{\hbar}^{\times}$, where $\mathbb{C}_{\hbar}^{\times}$scales cotangent directions

Fixed points: $\mathbf{p}=\left\{s_{1}, \ldots, s_{k}\right\} \in\left\{a_{1}, \ldots, a_{n}\right\}$
Denote $\mathcal{A}:=\mathbb{Q}\left(a_{1}, \ldots, a_{n}, \hbar\right), R:=\mathbb{Z}\left(a_{1}, \ldots, a_{n}, \hbar\right)$, then localized K-theory is:

$$
K_{T}(N(n))_{\text {loc }}=K_{T}(N(n)) \otimes_{R} \mathcal{A}=\sum_{k=0}^{n} K_{T}\left(N_{k, n}\right) \otimes_{R} \mathcal{A}
$$

is a 2^{n}-dimensional \mathcal{A}-vector space (Hilbert space for spin chain), spanned by \mathcal{O}_{p}.

Classical Bethe equations: The eigenvalues of the operators of multiplication by τ are $\tau\left(x_{1}, \cdots, x_{k}\right)$ evaluated at the solutions of the following equations:

$$
\prod_{j=1}^{n}\left(x_{i}-a_{j}\right)=0, \quad i=1, \ldots, k, \text { with } x_{i} \neq x_{j}
$$

Quantum tautological classes and Bethe equations

Outline

Quantum Integrability
Quantum K-theory

\hbar-opers and Bethe

 ansatzin order to deform tensor product: $A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \otimes_{d} B z^{d}$.
M/e will also define quantum tautological classes:

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau\left(x_{1}, \ldots, x_{k}\right)$ evaluated at the solutions of the following equations:

Quantum tautological classes and Bethe equations

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz
in order to deform tensor product: $A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \otimes_{d} B z^{d}$.
We will also define quantum tautological classes:

Theorem. [P. Pushkar, A. Smirnov, A. Z] The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau\left(x_{1}, \ldots, x_{k}\right)$ evaluated at the solutions of the following equations:

Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

$$
\mathcal{C}---\rightarrow N_{k, n}
$$

Outline

Quantumt Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz
in order to deform tensor product: $A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \otimes_{d} B z^{d}$.
We will also define quantum tautological classes:

$$
\hat{\tau}(z)=\tau+\sum_{d=1}^{\infty} \tau_{d} z^{d} \in K_{T}(N(n))[[z]]
$$

Theorem. [P. Pushkar, A. Smirnov, A. Z] The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau\left(x_{1}, \ldots, x_{k}\right)$ evaluated at the solutions of the following equations:

Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

$$
\mathcal{C}---\rightarrow N_{k, n}
$$

in order to deform tensor product: $A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \otimes_{d} B z^{d}$.
We will also define quantum tautological classes:

$$
\hat{\tau}(z)=\tau+\sum_{d=1}^{\infty} \tau_{d} z^{d} \in K_{T}(N(n))[[z]]
$$

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau\left(x_{1}, \ldots, x_{k}\right)$ evaluated at the solutions of the following equations:

$$
\prod_{j=1}^{n} \frac{x_{i}-a_{j}}{\hbar a_{j}-x_{i}}=z \hbar^{-n / 2} \prod_{\substack{j=1 \\ j \neq i}}^{k} \frac{x_{i} \hbar-x_{j}}{x_{i}-x_{j} \hbar}, \quad i=1 \cdots k
$$

The quantum K-theoretic meaning of the Q-operator

Outline

Quantum Integrability
Quantum K-theory
Theorem. [P. Pushkar, A. Smirnov, A.Z.]

- The quantum multiplication on quantur tautological class corresponding to $\tau_{u}:=\oplus_{m \geq 0} u^{m} \wedge^{m} \nu$ coincides with Q-operator, i..e

$$
\hat{\tau}_{u}(z)=Q(u)
$$

- Explicit universal formulas for quantum products::

where $a_{m}(z)=$

where K, F_{0}, E_{-1} are the generators of $U_{\sqrt{h}}\left(\hat{s}_{2}\right)$

The quantum K-theoretic meaning of the Q-operator

Outline

Quantum Integrability
Quantum K-theory
Theorem. [P. Pushkar, A. Smirnov, A.Z.]

- The quantum multiplication on quantum tautological class corresponding to $\tau_{u}:=\oplus_{m \geq 0} u^{m} \Lambda^{m} \mathcal{V}$ coincides with Q-operator, i..e

$$
\hat{\tau}_{u}(z)=Q(u)
$$

- Explicit universal formulas for quantum products::

Outline

Quantumt Integrability
Quantum K-theory

- The quantum multiplication on quantum tautological class corresponding to $\tau_{u}:=\oplus_{m \geq 0} u^{m} \Lambda^{m} \mathcal{V}$ coincides with Q-operator, i..e

$$
\hat{\tau}_{u}(z)=Q(u)
$$

- Explicit universal formulas for quantum products::

$$
\widehat{\Lambda^{\ell} \mathcal{V}}(z)=\Lambda^{\ell} \nu+a_{1}(z) F_{0} \Lambda^{\ell-1} \nu E_{-1}+\cdots+a_{\ell}(z) F_{0}^{\ell} E_{-1}^{\ell}
$$

where $a_{m}(z)=\frac{(\hbar-1)^{m} \hbar^{\frac{m(m+1)}{2}} K^{m}}{(m)_{\hbar}!\prod_{i=1}^{m}\left(1-(-1)^{n} z^{-1} \hbar^{i} K\right)}$,
where K, F_{0}, E_{-1} are the generators of $U_{\hbar}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

\hbar-oper connections for simple Lie groups

A (G, \hbar)-oper on \mathbb{P}^{1} is a triple:

- \mathcal{F}_{G} is a principal G-bundle
- \mathcal{F}_{B} its reduction \mathcal{F}_{B} to B
- $A \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{(\hbar)}\right)$ such that for any $C \in \operatorname{Hom}_{\mathcal{O (\mathbb { P } ^ { 1 })}\left(\mathcal{F}_{B}, \mathcal{F}_{B}^{(\hbar)}\right) \text {, }, \text {, }}$ the expression $C^{-1} A \in \operatorname{Hom}_{\left(\left(\mathbb{P}^{1}\right)\right.}\left(\mathcal{F}_{G}, \mathcal{F}_{G}\right)$ takes values in $M^{s}=B s B, s=\prod_{i} s_{i}$ is a Coxeter element.

$$
\text { Locally: } A(u)=n^{\prime}(u) \prod\left(\phi_{i}^{\grave{\alpha}_{i}} s_{i}\right) n(u), \phi_{i} \in \mathbb{C}, n(u), n^{\prime}(u) \in N(u)
$$

- (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^{1} :

$$
A(11)=n^{\prime}(1,) \prod\left(\Lambda^{\alpha_{i}}(u) \operatorname{si}\right) n(1,1) \quad \Lambda(u) \in \mathbb{C}[, u] .
$$

- (G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

\hbar-oper connections for simple Lie groups

A (G, \hbar)-oper on \mathbb{P}^{1} is a triple:

- \mathcal{F}_{G} is a principal G-bundle
- \mathcal{F}_{B} its reduction \mathcal{F}_{B} to B
- $A \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{(\hbar)}\right)$ such that for any $C \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{B}, \mathcal{F}_{B}^{(\hbar)}\right)$, the expression $C^{-1} A \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{G}, \mathcal{F}_{G}\right)$ takes values in $M^{s}=B s B, s=\prod_{i} s_{i}$ is a Coxeter element.

Locally : $A(u)=n^{\prime}(u) \prod_{i}\left(\phi_{i}^{\check{\alpha}_{i}} s_{i}\right) n(u), \phi_{i} \in \mathbb{C}, n(u), n^{\prime}(u) \in N(u)$

- (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^{1}

$$
\begin{gathered}
A(u)=h^{\prime \prime}(u) \prod_{i}\left(\wedge_{i}^{\alpha_{i}}(u) s_{i}\right)\left(h^{\prime}\right), \wedge(u) \in \mathbb{C}[u] . \\
(G, h) \text {-oper is } Z \text {-twisted if it is gauge equivalent to } Z \in H, \text { namely } \\
A(u)=g(\hbar u) Z g^{-1}(u) \text {, where } Z=\prod z_{i}^{\alpha_{i}}, g(u) \in G(u)=G(\mathbb{C}(u)) .
\end{gathered}
$$

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

\hbar-oper connections for simple Lie groups

A (G, \hbar)-oper on \mathbb{P}^{1} is a triple:

- \mathcal{F}_{G} is a principal G-bundle
- \mathcal{F}_{B} its reduction \mathcal{F}_{B} to B
- $A \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{(\hbar)}\right)$ such that for any $C \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{B}, \mathcal{F}_{B}^{(\hbar)}\right)$, the expression $C^{-1} A \in \operatorname{Hom}_{\mathcal{O}\left(\mathbb{P}^{1}\right)}\left(\mathcal{F}_{G}, \mathcal{F}_{G}\right)$ takes values in $M^{s}=B s B, s=\prod_{i} s_{i}$ is a Coxeter element.

Locally : $A(u)=n^{\prime}(u) \prod_{i}\left(\phi_{i}^{\check{\alpha}_{i}} s_{i}\right) n(u), \phi_{i} \in \mathbb{C}, n(u), n^{\prime}(u) \in N(u)$

- (G, \hbar)-oper with regular singularities at finitely many points on \mathbb{P}^{1} :

$$
A(u)=n^{\prime}(u) \prod_{i}\left(\Lambda_{i}^{\check{\alpha}_{i}}(u) s_{i}\right) n(u), \Lambda_{i}(u) \in \mathbb{C}[u]
$$

- (G, \hbar)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=g(\hbar u) Z g^{-1}(u), \text { where } Z=\prod_{i} z_{i}^{\check{\alpha}_{i}}, g(u) \in G(u)=G(\mathbb{C}(u))
$$

\hbar-opers and QQ-systems

Under mild conditions we have the following (based on work with P. Koroteev, D. Sage (2018) and with E. Frenkel, P. Koroteev, D. Sage (2019)):

If G is of $A D E$ type, then:
Z - twisted \hbar - opers with regular singularities \leftrightarrow
QQ - system/Bethe equations

In the non-simply-laced case we get different Bethe equations, not \mathfrak{g}^{L} ! Conjecturally corresponding to twisted affine Lie algebras.

\hbar-opers and QQ-systems

Outline

Under mild conditions we have the following (based on work with P. Koroteev, D. Sage (2018) and with E. Frenkel, P. Koroteev, D. Sage (2019)):

If G is of $A D E$ type, then:

$$
\mathrm{Z}-\text { twisted } \hbar-\text { opers with regular singularities } \leftrightarrow
$$

QQ - system/Bethe equations

In the non-simply-laced case we get different Bethe equations, not \mathfrak{g}^{L} ! Conjecturally corresponding to twisted affine Lie algebras.

SL(2) example

Outline

Quantum Integrability
A Z-twisted $(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{q}$ is an isomorphism except for zeroes of $\Lambda(u)$.
- A is gauge equivalent to $Z \in H$

Equivalently:

$$
s(\hbar u) \wedge A(u) s(u)=\wedge(u)
$$

where $s(u)$ is a section of \mathcal{L}. Choosing trivialization $s(u)=\binom{Q_{-}(u)}{Q_{+}(u)}$ we obtain that above condition is the QQ-system:

$$
z Q_{-}(u) Q_{+}(\hbar u)-z^{-1} Q_{-}(\hbar u) Q_{+}(u)=\Lambda(u) .
$$

SL(2) example

Outline

Quantum Integrability
A Z-twisted $(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{q}$ is an isomorphism except for zeroes of $\Lambda(u)$.
- A is gauge equivalent to $Z \in H$

Equivalently:

$$
s(\hbar u) \wedge A(u) s(u)=\wedge(u)
$$

where $s(u)$ is a section of \mathcal{L}.
 we obtain that above condition is the $Q Q$-system:

$$
z Q_{-}(u) Q_{+}(\hbar u)-z^{-1} Q_{-}(\hbar u) Q_{+}(u)=\Lambda(u) .
$$

SL(2) example

Outline

A Z-twisted $(S L(2), \hbar)$-oper on \mathbb{P}^{1} with regular singularities is a triple (E, A, \mathcal{L}) :

- (E, A) is a $(S L(2), \hbar)$-connection
- \mathcal{L} is a line subbundle so that $\bar{A}: \mathcal{L} \rightarrow(E / \mathcal{L})^{q}$ is an isomorphism except for zeroes of $\Lambda(u)$.
- A is gauge equivalent to $Z \in H$

Equivalently:

$$
s(\hbar u) \wedge A(u) s(u)=\Lambda(u)
$$

where $s(u)$ is a section of \mathcal{L}. Choosing trivialization $s(u)=\binom{Q_{-}(u)}{Q_{+}(u)}$, we obtain that above condition is the QQ-system:

$$
z Q_{-}(u) Q_{+}(\hbar u)-z^{-1} Q_{-}(\hbar u) Q_{+}(u)=\Lambda(u)
$$

Quantum q-Langlands correspondence

Outline

Quantum Integrability
Quantum K-theory
\hbar-opers and Bethe ansatz

These two geometric descriptions are related, and illustrate the critical version of the quantum q-Langlands correspondence (outlined by M . Aganagic, E. Frenkel, A, Okounkov) :

One-to-one correspondence between:

- Conformal blocks for \hbar-deformed W-algebra, which are solutions to \hbar-difference equations emerging from \hbar-opers with regular singularities,
- Conformal blocks for $U_{\hbar}(\hat{\mathfrak{g}})$, solutions to qKZ equations.

Outline

Quantum Integrability Quantum K-theory
\hbar-opers and Bethe ansatz

Thank you!

