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Some history of quantum integrable systems and Bethe ansatz

Exactly solvable models of statistical physics: spin chains, vertex models

1930s: Hans Bethe: Bethe ansatz solution of Heisenberg model

1960-70s: R.J. Baxter, C.N. Yang: Yang-Baxter equation, Baxter
operator

1980s: Development of ”QISM” by Leningrad school leading to the
discovery of quantum groups by Drinfeld and Jimbo

Since 1990s: textbook subject and an established area of mathematics
and physics.
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Geometric interpretations

I Enumerative geometry: quantum K-theory

Generalization of quantum cohomology in the early 2000s by A.
Givental, Y.P. Lee and collaborators. Recently big progress in this
direction by A. Okounkov and his school.

P.Pushkar, A. Smirnov, A.Z., Baxter Q-operator from quantum
K-theory, arXiv:1612.08723

P. Koroteev, P.Pushkar, A. Smirnov, A.Z., Quantum K-theory of
Quiver Varieties and Many-Body Systems, arXiv:1705.10419

I Multiplicative connections, q-opers

q-deformed version of the classic example of geometric Langlands
correspondence, studied in detail by B. Feigin, E. Frenkel, N.
Reshetkhin: correspondence between opers (certain connections
with regular singularities) and Gaudin models.

P. Koroteev, D. Sage, A. Z., (SL(N),q) -opers, the q-Langlands
correspondence, and quantum/classical duality, arXiv:1811.09937

E. Frenkel, P. Koroteev, D. Sage, A.Z., q-opers, QQ-systems and
Bethe ansatz, to appear in 2019
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Quantum groups and Bethe ansatz

Quantum equivariant K-theory and Bethe ansatz

~-opers and Bethe ansatz
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Loop algebras and evaluation modules

Let us consider Lie algebra g.

The associated loop algebra is ĝ = g[t, t−1] and t is known as spectral
parameter.

The following representations, known as evaluation modules form a
tensor category of ĝ:

V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an),

where

I Vi are representations of g

I ai are values for t
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Quantum groups

Quantum group

U~(ĝ)

is a deformation of U(ĝ), with a nontrivial intertwiner RV1,V2 (a1/a2):

V1(a1)⊗ V2(a2)

V2(a2)⊗ V1(a1)

which is a rational function of a1, a2, satisfying Yang-Baxter equation:

The generators of U~(ĝ) emerge as matrix elements of R-matrices (the
so-called FRT construction).
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Integrability and Baxter algebra

Source of integrability: commuting transfer matrices, generating Baxter
algebra which are weighted traces of

R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys
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Baxter algebra and Integrability

Source of integrability: commuting transfer matrices, generating Baxter
algebra which are weighted traces of

R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys

over auxiliary W (u) space:

TW (u) = TrW (u)

(
(Z ⊗ 1) R̃W (u),Hphys

)

Here Z ∈ eh, where h ∈ g are diagonal matrices.



Anton Zeitlin

Outline

Quantum Integrability

Quantum K-theory

~-opers and Bethe
ansatzIntegrability:

[TW ′(u
′),TW (u)] = 0

There are special transfer matrices is called Baxter Q-operators. Such
operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize {TW (u)} simultaneously.
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g = sl(2): XXZ spin chain

Textbook example (and main example in this talk) is XXZ Heisenberg
spin chain:

HXXZ = C2(a1)⊗ C2(a2)⊗ · · · ⊗ C2(an)

States:
↑↑↑↑ ↓ ↑↑↑ ↓ ↑↑↑↑ ↓ ↑↑↑↑↑ ↓↓ ↑↑↑

Here C2 stands for 2-dimensional representation of U~(ŝl2).

Algebraic method to diagonalize transfer matrices:

Algebraic Bethe ansatz

as a part of Quantum Inverse Scattering Method developed in the
1980s.
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Bethe equations and Q-operator

The eigenvalues are generated by symmetric functions of Bethe roots
{xi}:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,

so that the eigenvalues Λ(u) of the Q-operator are the generating
functions for the elementary symmetric functions of Bethe roots:

Λ(u) =
k∏

i=1

(1 + u · xi )

A real challenge is to describe representation-theoretic meaning of
Q-operator for general g (possibly infinite-dimensional).
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q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations
for

Ψ(z1, . . . , zk ; a1, . . . , an) ∈ V1(a1)⊗ · · · ⊗ Vn(an)[[z1, . . . , zk ]]

known as

Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

Ψ(qa1, . . . , an, {zi}) = (Z ⊗ 1⊗ · · · ⊗ 1)RV1,Vn . . .RV1,V2 Ψ

+

commuting difference equations in z − variables

Here {zi} are the components of twist variable Z .

The latter series of equations are known as dynamical equations,
studied by Etingof, Felder, Tarasov, Varchenko, . . .

In q → 1 limit we arrive to an eigenvalue problem. Studying the
asymptotics of the corresponding solutions we arrive to Bethe equations
and eigenvectors.
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QQ-systems

Another modern view on Bethe ansatz is due to D. Hernandez and E.
Frenkel, following earlier papers by V. Bazhanov, S. Lukyanov and A.
Zamolodchikov.

Extension of the category of representations of U~(ĝ) by representations
of Borel subalgebra give rise to the so-called QQ-systems.

In the case of U~( ˆsl(2)) the QQ-system is:

zQ̃(~u)Q(u)− z−1Q(~u)Q̃(u) =
∏
i

(u − ai )

Here Q(u) can be viewed as an eigenvalue of the Q-operator.
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Key ideas: enumerative geometry of Nakajima varieties

Nekrasov and Shatashvili:

Quantum equivariant K− theory ring of Nakajima variety =

symmetric polynomials in xij / Bethe equations
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Key Ideas: enumerative geometry of Nakajima varieties

Nekrasov and Shatashvili:

Quantum K− theory ring of Nakajima variety =

symmetric polynomials in xij / Bethe equations

Input by Okounkov:

q− difference equations for vertex functions =

qKZ equations + dynamical equations

through the study of quasimap moduli spaces for Nakajima varities
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In the following we will talk about this in the simplest case:

I Nakajima variety: N = T ∗Gr(k, n)

I Quantum Integrable System: sl(2) XXZ spin chain.



Anton Zeitlin

Outline

Quantum Integrability

Quantum K-theory

~-opers and Bethe
ansatz

Notation

T ∗Gr(k, n) = Nk,n, tkNk,n = N(n).

As a Nakajima variety:

Nk,n = T ∗M////GL(V ) = µ−1(0)s/GL(V ),

where
T ∗M = Hom(V ,W )⊕ Hom(W ,V )

Tautological bundles:

V = T ∗M× V ////GL(V ), W = T ∗M×W ////GL(V )

For any τ ∈ KGL(V )(·) = Λ(x±1
1 , x±1

2 , . . . x±1
k ) we introduce a

tautological bundle:

τ = T ∗M× τ(V )////GL(V )
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Tori, Fixed points and Bethe roots

Torus action:

A = C×a1
× · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Fixed points: p = {s1, . . . , sk} ∈ {a1, . . . , an}

Denote A := Q(a1, . . . , an, ~), R := Z(a1, . . . , an, ~), then localized
K-theory is:

KT (N(n))loc = KT (N(n))⊗R A =
n∑

k=0

KT (Nk,n)⊗R A

is a 2n-dimensional A-vector space (Hilbert space for spin chain),
spanned by Op.

Classical Bethe equations: The eigenvalues of the operators of
multiplication by τ are τ(x1, · · · , xk) evaluated at the solutions of the
following equations:

n∏
j=1

(xi − aj) = 0, i = 1, . . . , k, with xi 6= xj
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Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

C−−− → Nk,n

in order to deform tensor product: A ~ B = A⊗B +
∑∞

d=1 A⊗d B zd .

We will also define quantum tautological classes:

τ̂(z) = τ +
∞∑
d=1

τ dz
d ∈ KT (N(n))[[z]]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators
of quantum multiplication by τ̂(z) are given by the values of the
corresponding Laurent polynomials τ(x1, . . . , xk) evaluated at the
solutions of the following equations:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,
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, i = 1 · · · k,
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The quantum K-theoretic meaning of the Q-operator

Theorem. [P. Pushkar, A. Smirnov, A.Z.]

I The quantum multiplication on quantum tautological class
corresponding to τu := ⊕m≥0u

mΛmV coincides with Q-operator, i..e

τ̂u(z) = Q(u)

I Explicit universal formulas for quantum products::

Λ̂`V(z) = Λ`V + a1(z) F0Λ`−1
VE−1 + · · ·+ a`(z) F `0 E

`
−1,

where am(z) = (~−1)m ~
m(m+1)

2 Km

(m)~!
m∏
i=1

(1−(−1)nz−1~iK)
,

where K ,F0,E−1 are the generators of U~(ŝl2).
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~-oper connections for simple Lie groups

A (G , ~)-oper on P1 is a triple:

I FG is a principal G -bundle

I FB its reduction FB to B

I A ∈ HomO(P1)(FG ,F
(~)
G ) such that for any C ∈ HomO(P1)(FB ,F

(~)
B ),

the expression C−1A ∈ HomO(P1)(FG ,FG ) takes values in
Ms = BsB, s =

∏
i si is a Coxeter element.

Locally : A(u) = n′(u)
∏
i

(φα̌i
i si )n(u), φi ∈ C, n(u), n′(u) ∈ N(u)

I (G , ~)-oper with regular singularities at finitely many points on P1:

A(u) = n′(u)
∏
i

(Λα̌i
i (u)si )n(u), Λi (u) ∈ C[u].

I (G , ~)-oper is Z-twisted if it is gauge equivalent to Z ∈ H, namely

A(u) = g(~u)Zg−1(u), where Z =
∏
i

z α̌i
i , g(u) ∈ G(u) = G(C(u)).
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~-opers and QQ-systems

Under mild conditions we have the following
(based on work with P. Koroteev, D. Sage (2018)
and with E. Frenkel, P. Koroteev, D. Sage (2019)):

If G is of ADE type, then:

Z− twisted ~− opers with regular singularities↔

QQ− system/Bethe equations

In the non-simply-laced case we get different Bethe equations, not gL!
Conjecturally corresponding to twisted affine Lie algebras.
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SL(2) example

A Z-twisted (SL(2), ~)-oper on P1 with regular singularities is a triple
(E ,A,L):

I (E ,A) is a (SL(2), ~)-connection

I L is a line subbundle so that Ā : L→ (E/L)q is an isomorphism
except for zeroes of Λ(u).

I A is gauge equivalent to Z ∈ H

Equivalently:
s(~u) ∧ A(u)s(u) = Λ(u),

where s(u) is a section of L. Choosing trivialization s(u) =

(
Q−(u)
Q+(u)

)
,

we obtain that above condition is the QQ-system:

zQ−(u)Q+(~u)− z−1Q−(~u)Q+(u) = Λ(u).
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Quantum q-Langlands correspondence

These two geometric descriptions are related , and illustrate the critical
version of the quantum q-Langlands correspondence (outlined by M.
Aganagic, E. Frenkel, A, Okounkov) :

One-to-one correspondence between:

I Conformal blocks for ~-deformed W-algebra, which are solutions to
~-difference equations emerging from ~-opers with regular
singularities,

I Conformal blocks for U~(ĝ), solutions to qKZ equations.
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Thank you!
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