Hyperbolic supergeometry, Super-Teichmueller spaces and applications

Anton M. Zeitlin
Louisiana State University, Department of Mathematics

CIRM
October, 2020

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems
O.

Outline

Let $F_{s}^{g} \equiv F$ be the Riemann surface of genus g and s punctures. We assume $s>0$ and $2-2 g-s<0$.

Hyperbolic
Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open prohlems
$T(F)=\operatorname{Hom}^{\prime}\left(\pi_{1}(F), \operatorname{PSL}(2, \mathbb{R})\right) / P S L(2, \mathbb{R})$,
where $\rho \in \mathrm{Hom}^{\prime}$ if

- ρ is injective
- identity in $\operatorname{PSL}(2, \mathbb{R})$ is not an accumulation point of the image of ρ, i.e. ρ is discrete
- the group elements corresponding to loops around punctures are parabolic $(|\operatorname{tr}|=2)$

Replacing $\operatorname{PSL}(2, R)$ with

$$
\operatorname{OSP}(1 \mid 2), \quad \operatorname{OSP}(2 \mid 2)
$$

one obtains $\mathcal{N}=1$ and $\mathcal{N}=2$ super-Teichmüller spaces.
In the late 80s the problem of construction of Penner's coordinates on $S T(F)$ was introduced on Yu.l. Manin's Moscow seminar.

The $\mathcal{N}=1$ case was solved in:
R. Penner, A. Z., J. Diff. Geom. 111 (2019) 527-566, arXiv:1509.06302

The $\mathcal{N}=2$ case was solved in:
I. Ip, R. Penner, A. Z., Adv. Math. 336 (2018) 409-454, arXiv:1605.08094

Full decoration removal for $\mathcal{N}=1$:
I. Ip, R. Penner, A. Z., arXiv:1709.06207, Comm. Math. Phys. 371 (2019) 145-157, arXiv:1709.06207

Super McShane idenity:
Y. Huang, R. Penner, A. Z., arXiv:1907.09978

Hyperbolic

Supergeometry

Hyperbolic Supergeometry
Coordinates on Super-Teichmüller space
Super McShane identity

Hyperbolic

 SupergeometryCoordinates on Super-Teichmüller space

Super McShane

 identity$\mathrm{N}=2$
super-Teichmüller theory

Open problems
$N=2$ super-Teichmüller theory
Open problems

Supernumbers

Let $\Lambda(\mathbb{K})=\Lambda^{0}(\mathbb{K}) \oplus \Lambda^{1}(\mathbb{K})$ be an exterior algebra over field $\mathbb{K}=\mathbb{R}, \mathbb{C}$ with (in)finitely many generators $1, e_{1}, e_{2}, \ldots$, so that

$$
a=a^{\#}+\sum_{i} a_{i} e_{i}+\sum_{i j} a_{i j} e_{i} \wedge e_{j}+\ldots, \quad \#: \Lambda(\mathbb{K}) \rightarrow \mathbb{K}
$$

Hyperbolic

 SupergeometryCoordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Supernumbers

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$N=2$
super-Teichmüller theory

Open problems
$a^{\#}$ is referred to as a body of a supernumber.
If $a \in \Lambda^{0}(\mathbb{K})$, it is called even (bosonic) number If $a \in \Lambda^{1}(\mathbb{K})$, it is called odd (fermionic) number

Note, that odd numbers anticommute.

Superspaces and supermanifolds

Superspace $\mathbb{K}^{(n \mid m)}$ is:

$$
\mathbb{K}^{(n \mid m)}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right): z_{i} \in \Lambda^{0}(\mathbb{K}), \theta_{j} \in \Lambda^{1}(\mathbb{K})\right\}
$$

One can define $(n \mid m)$ supermanifolds over $\Lambda(\mathbb{K})$ based on superspaces $\mathbb{K}^{(n \mid m)}$, where $\left\{z_{i}\right\}$ and $\left\{\theta_{i}\right\}$ serve as even and odd coordinates.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Special spaces:

- Upper $\mathcal{N}=N$ super-half-plane (we will need $\mathcal{N}=1,2$):
- Positive superspace:

Superspaces and supermanifolds

Superspace $\mathbb{K}^{(n \mid m)}$ is:

$$
\mathbb{K}^{(n \mid m)}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right): z_{i} \in \Lambda^{0}(\mathbb{K}), \theta_{j} \in \Lambda^{1}(\mathbb{K})\right\}
$$

One can define $(n \mid m)$ supermanifolds over $\Lambda(\mathbb{K})$ based on superspaces $\mathbb{K}^{(n \mid m)}$, where $\left\{z_{i}\right\}$ and $\left\{\theta_{i}\right\}$ serve as even and odd coordinates.

Hyperbolic

Supergeometry
Coordinates on
Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Special spaces:

- Upper $\mathcal{N}=N$ super-half-plane (we will need $\mathcal{N}=1,2$):

$$
\boldsymbol{H}^{+}=\left\{\left(z \mid \theta_{1}, \theta_{2}, \ldots, \theta_{N}\right) \in \mathbb{C}^{(1 \mid N)} \mid \operatorname{Im} z^{\#}>0\right\}
$$

- Positive superspace:

$$
\mathbb{R}_{+}^{(n \mid m)}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in \mathbb{R}^{(n \mid m)} \mid z_{i}^{\#}>0, i=1, \ldots, n\right\}
$$

Supergroup $\operatorname{OSp}(1 \mid 2)$

A subgroup of $G L(1 \mid 2)$, namely invertible $(1 \mid 2) \times(1 \mid 2)$ supermatrices g, obeying the relation:

$$
g^{s t} J g=J
$$

where

$$
J=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Hyperbolic
Supergeometry
Coordinates on
Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
and the supertranspose $g^{s t}$ of g is given by

$$
g=\left(\begin{array}{lll}
a & b & \alpha \\
c & d & \beta \\
\gamma & \delta & f
\end{array}\right) \quad \text { implies } \quad g^{s t}=\left(\begin{array}{ccc}
a & c & \gamma \\
b & d & \delta \\
-\alpha & -\beta & f
\end{array}\right)
$$

We want a connected component of identity, so we assume that Berezinian (super-analogue of determinant) $=1$.

Important remark: Note, that the body of the supergroup $\operatorname{OSP}(1 \mid 2)$ is $S L(2, \mathbb{R})$, not $\operatorname{PSL}(2, \mathbb{R})$!

Supergroup $\operatorname{OSp}(1 \mid 2)$

A subgroup of $G L(1 \mid 2)$, namely invertible $(1 \mid 2) \times(1 \mid 2)$ supermatrices g, obeying the relation:

$$
g^{s t} J g=J
$$

where

$$
J=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Hyperbolic
Supergeometry
Coordinates on
and the supertranspose $g^{s t}$ of g is given by

$$
g=\left(\begin{array}{lll}
a & b & \alpha \\
c & d & \beta \\
\gamma & \delta & f
\end{array}\right) \quad \text { implies } \quad g^{s t}=\left(\begin{array}{ccc}
a & c & \gamma \\
b & d & \delta \\
-\alpha & -\beta & f
\end{array}\right)
$$

We want a connected component of identity, so we assume that Berezinian (super-analogue of determinant) $=1$.

Important remark: Note, that the body of the supergroup $\operatorname{OSP}(1 \mid 2)$ is $S L(2, \mathbb{R})$, not $P S L(2, \mathbb{R})$!

Lie superalgebra osp(1|2)

Hyperbolic
Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$N=2$
super-Teichmüller theory

Open problems
generators, satisfying the following commutation relations:

$$
\left[h, v_{ \pm}\right]= \pm v_{ \pm}, \quad\left[v_{ \pm}, v_{ \pm}\right]=\mp 2 X_{ \pm}, \quad\left[v_{+}, v_{-}\right]=h .
$$

An important observation is that Killing form gives a super-Minkowski space $\mathbb{R}^{2,1 \mid 2}$.

Hyperbolic supergeometry

$\operatorname{OSp}(1 \mid 2)$ acts on super-Minkowski space $\mathbb{R}^{2,1 \mid 2}$ (in the bosonic case $\operatorname{PSL}(2, \mathbb{R})$ acts on $\left.\mathbb{R}^{2,1}\right)$.
If $A=\left(x_{1}, x_{2}, y \mid \phi, \theta\right)$ and $A^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, y^{\prime} \mid \phi^{\prime}, \theta^{\prime}\right)$ in $\mathbb{R}^{2,1 \mid 2}$, the pairing is:

$$
\left\langle A, A^{\prime}\right\rangle=\frac{1}{2}\left(x_{1} x_{2}^{\prime}+x_{1}^{\prime} x_{2}\right)-y y^{\prime}+\phi \theta^{\prime}+\phi^{\prime} \theta .
$$

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$ super-Teichmüller theory

Open problems

Hyperbolic supergeometry

$\operatorname{OSp}(1 \mid 2)$ acts on super-Minkowski space $\mathbb{R}^{2,1 \mid 2}$ (in the bosonic case $\operatorname{PSL}(2, \mathbb{R})$ acts on $\left.\mathbb{R}^{2,1}\right)$.
If $A=\left(x_{1}, x_{2}, y \mid \phi, \theta\right)$ and $A^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, y^{\prime} \mid \phi^{\prime}, \theta^{\prime}\right)$ in $\mathbb{R}^{2,1 \mid 2}$, the pairing is:

$$
\left\langle A, A^{\prime}\right\rangle=\frac{1}{2}\left(x_{1} x_{2}^{\prime}+x_{1}^{\prime} x_{2}\right)-y y^{\prime}+\phi \theta^{\prime}+\phi^{\prime} \theta .
$$

Two surfaces of special importance for us are

- Superhyperboloid \mathbb{H} consisting of points $A \in \mathbb{R}^{2,1 \mid 2}$ satisfying the condition $\langle A, A\rangle=1$
- Positive super light cone L^{+}consisting of points $B \in \mathbb{R}^{2,1 \mid 2}$ satisfying $\langle B, B\rangle=0$,
where $x_{1}^{\#}, x_{2}^{\#} \geq 0$.
There is an equivariant projection from \mathbb{H} on the $\mathcal{N}=1$ super upper half-plane H^{+}

Hyperbolic

Supergeometry
Coordinates on
Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$

Hyperbolic supergeometry

$\operatorname{OSp}(1 \mid 2)$ acts on super-Minkowski space $\mathbb{R}^{2,1 \mid 2}$ (in the bosonic case $\operatorname{PSL}(2, \mathbb{R})$ acts on $\left.\mathbb{R}^{2,1}\right)$.
If $A=\left(x_{1}, x_{2}, y \mid \phi, \theta\right)$ and $A^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, y^{\prime} \mid \phi^{\prime}, \theta^{\prime}\right)$ in $\mathbb{R}^{2,1 \mid 2}$, the pairing is:

$$
\left\langle A, A^{\prime}\right\rangle=\frac{1}{2}\left(x_{1} x_{2}^{\prime}+x_{1}^{\prime} x_{2}\right)-y y^{\prime}+\phi \theta^{\prime}+\phi^{\prime} \theta .
$$

Hyperbolic

Supergeometry
Coordinates on

Two surfaces of special importance for us are

- Superhyperboloid \mathbb{H} consisting of points $A \in \mathbb{R}^{2,1 \mid 2}$ satisfying the condition $\langle A, A\rangle=1$
- Positive super light cone L^{+}consisting of points $B \in \mathbb{R}^{2,1 \mid 2}$ satisfying $\langle B, B\rangle=0$,
where $x_{1}^{\#}, x_{2}^{\#} \geq 0$.
There is an equivariant projection from \mathbb{H} on the $\mathcal{N}=1$ super upper half-plane H^{+}.
$\operatorname{OSp}(1 \mid 2)$-action on the upper half-plane
$\operatorname{OSp}(1 \mid 2)$ acts on $\mathcal{N}=1$ super half-plane H^{+}, with the absolute $\partial H^{+}=\mathbb{R}^{1 \mid 1}$ by superconformal fractional-linear transformations:

$$
\begin{aligned}
& z \rightarrow \frac{a z+b}{c z+d}+\eta \frac{\gamma z+\delta}{(c z+d)^{2}} \\
& \eta \rightarrow \frac{\gamma z+\delta}{c z+d}+\eta \frac{1+\frac{1}{2} \delta \gamma}{c z+d}
\end{aligned}
$$

Factor H^{+} / Γ, where Γ is a discrete subgroup of $\operatorname{OSp}(1 \mid 2)$, such that its projection is a Fuchsian group, are called super Riemann surfaces.

There are more general fractional-linear transformations leading to (1|1)-supermanifolds.

Hyperbolic

Supergeometry
Coordinates on
$\operatorname{OSp}(1 \mid 2)$-action on the upper half-plane
$\operatorname{OSp}(1 \mid 2)$ acts on $\mathcal{N}=1$ super half-plane H^{+}, with the absolute $\partial H^{+}=\mathbb{R}^{1 \mid 1}$ by superconformal fractional-linear transformations:

$$
\begin{aligned}
& z \rightarrow \frac{a z+b}{c z+d}+\eta \frac{\gamma z+\delta}{(c z+d)^{2}} \\
& \eta \rightarrow \frac{\gamma z+\delta}{c z+d}+\eta \frac{1+\frac{1}{2} \delta \gamma}{c z+d}
\end{aligned}
$$

Factor H^{+} / Γ, where Γ is a discrete subgroup of $\operatorname{OSp}(1 \mid 2)$, such that its projection is a Fuchsian group, are called super Riemann surfaces.

There are more general fractional-linear transformations leading to (1|1)-supermanifolds.

Hyperbolic

Supergeometry
Coordinates on

Alternate characterization of super-Riemann surfaces

Hyperbolic

Supergeometry
Coordinates on

There are more general fractional-linear transformations acting on H^{+}. They correspond to $S L(1 \mid 2)$ supergroup, and factors H^{+} / Γ give (1|1)-supermanifolds which have relation to $\mathcal{N}=2$ super-Teichmüller theory.

The light cone

$\operatorname{OSp}(1 \mid 2)$ does not act transitively on L^{+}:

The space of orbits is labelled by odd variable up to a sign: $L^{+}=\cup_{|\theta|} L_{|\theta|}^{+}$.

We pick an orbit of the vector $(1,0,0 \mid 0, \theta)$ and denote it $L_{|\theta|}^{+}$
Super McShane identity
$\mathrm{N}=$?
super-Teichmüller theory

Open problems

The light cone

Hyperbolic Supergeometry

Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

We pick an orbit of the vector $(1,0,0 \mid 0, \theta)$ and denote it $L_{|\theta|}^{+}$.

There is an equivariant projection from L_{0}^{+}to $\mathbb{R}^{1 \mid 1}=\partial H^{+}$

The light cone

Hyperbolic
Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

We pick an orbit of the vector $(1,0,0 \mid 0, \theta)$ and denote it $L_{|\theta|}^{+}$.

There is an equivariant projection from L_{0}^{+}to $\mathbb{R}^{1 \mid 1}=\partial H^{+}$.

Geodesics

- Special geodesics: the ones with endpoints on the rays of L_{0}^{+}(or on $\left.\mathbb{R}^{1 \mid 1}\right)$. They become pure bosonic under $\operatorname{OSp}(1 \mid 2)$ action.
- General geodesics: endpoints are labeled by fermions up to a sign:

Hyperbolic
Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Explicit expression:

Geodesics

- Special geodesics: the ones with endpoints on the rays of L_{0}^{+}(or on $\left.\mathbb{R}^{1 \mid 1}\right)$. They become pure bosonic under $\operatorname{OSp}(1 \mid 2)$ action.
- General geodesics: endpoints are labeled by fermions up to a sign: $|\alpha, \beta|$.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Explicit expression:

Geodesics

- Special geodesics: the ones with endpoints on the rays of L_{0}^{+}(or on $\left.\mathbb{R}^{1 \mid 1}\right)$. They become pure bosonic under $\operatorname{OSp}(1 \mid 2)$ action.
- General geodesics: endpoints are labeled by fermions up to a sign: $|\alpha, \beta|$.

Hyperbolic

Supergeometry
Coordinates on

Explicit expression:

$$
\mathbf{x}(t)=\mathbf{u} \operatorname{ch}(t)+\mathbf{v} \operatorname{sh}(t)
$$

where $\langle\mathbf{u}, \mathbf{u}\rangle=1,\langle\mathbf{v}, \mathbf{v}\rangle=-1,\langle\mathbf{u}, \mathbf{v}\rangle=0$.
Here t is a length parameter, $\mathbf{e}=\mathbf{u}+\mathbf{v}, \mathbf{f}=\mathbf{u}-\mathbf{v}$ generate the light cone rays at the endpoints which belong to the orbits $L_{|\alpha|}^{+}, L_{|\beta|}^{+}$.

Triangles in $L_{|\theta|}^{+}$and their invariants.

- There is a unique $\operatorname{OSp}(1 \mid 2)$-invariant of two linearly independent vectors $A, B \in L_{0}^{+}$, and it is given by the pairing $\langle A, B\rangle$, the square root of which we will call λ-length.
- The moduli space of $\operatorname{OSp}(1 \mid 2)$-orbits of positive triples in the light cone is given by $(a, b, e \mid \alpha, \beta, \epsilon, \theta) \in \mathbb{R}_{+}^{3 / 4} / \mathbb{Z}_{2}$, where \mathbb{Z}_{2} acts by fermionic

Hyperbolic
Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Let $\zeta^{b} \zeta^{e} \zeta^{a}$ be a positive triple in L_{0}^{+}, then $\alpha, \beta, \epsilon=0$. Then there is $g \in O S p(1 \mid 2)$, which is unique up to composition with the fermionic reflection, and unique even r, s, t, which have positive bodies, and odd θ so that

On the superline $\mathbb{R}^{1 \mid 1}$ the parameter θ is known as Manin invariant.

Triangles in $L_{|\theta|}^{+}$and their invariants.

Hyperbolic Supergeometry

Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

- The moduli space of $\operatorname{OSp}(1 \mid 2)$-orbits of positive triples in the light cone is given by $(a, b, e \mid \alpha, \beta, \epsilon, \theta) \in \mathbb{R}_{+}^{3 \mid 4} / \mathbb{Z}_{2}$, where \mathbb{Z}_{2} acts by fermionic reflection.
- There is a unique $\operatorname{OSp}(1 \mid 2)$-invariant of two linearly independent vectors $A, B \in L_{0}^{+}$, and it is given by the pairing $\langle A, B\rangle$, the square root of which we will call λ-length.

On the superline $\mathbb{R}^{1 \mid 1}$ the parameter θ is known as Manin invariant.

Triangles in $L_{|\theta|}^{+}$and their invariants.

- There is a unique $\operatorname{OSp}(1 \mid 2)$-invariant of two linearly independent vectors $A, B \in L_{0}^{+}$, and it is given by the pairing $\langle A, B\rangle$, the square root of which we will call λ-length.
- The moduli space of $\operatorname{OSp}(1 \mid 2)$-orbits of positive triples in the light cone is given by $(a, b, e \mid \alpha, \beta, \epsilon, \theta) \in \mathbb{R}_{+}^{3 \mid 4} / \mathbb{Z}_{2}$, where \mathbb{Z}_{2} acts by fermionic

Hyperbolic

 SupergeometryCoordinates on

Let $\zeta^{b} \zeta^{e} \zeta^{a}$ be a positive triple in L_{0}^{+}, then $\alpha, \beta, \epsilon=0$. Then there is $g \in \operatorname{OSp}(1 \mid 2)$, which is unique up to composition with the fermionic reflection, and unique even r, s, t, which have positive bodies, and odd θ so that

$$
g \cdot \zeta^{e}=t(1,1,1 \mid \theta, \theta), g \cdot \zeta^{b}=r(0,1,0 \mid 0,0), g \cdot \zeta^{a}=s(1,0,0 \mid 0,0)
$$

On the superline $\mathbb{R}^{1 \mid 1}$ the parameter θ is known as Manin invariant.

Horocycles and λ-lengths

Key notion for Penner coordinates: horocycles.
These are (1|2)-dimensional spaces determined by $\mathbf{u} \in L_{0}^{+}$:

$$
h(\mathbf{u})=\left\{\mathbf{P} \in \mathbb{H}:\langle\mathbf{P}, \mathbf{u}\rangle=\frac{1}{\sqrt{2}}\right\}
$$

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Positive parameters correspond to the "renormalized" geodesic lengths:

The lambda length $\lambda=e^{\delta / 2}=\sqrt{\left\langle h\left(\mathbf{u}_{1}\right), h\left(\mathbf{u}_{2}\right)\right\rangle}$

Mapping class group action

Hyperbolic

Supergeometry

Coordinates on Super-Teichmüller space

Moduli space:

$$
M(F)=T(F) / M C(F)
$$

The mapping class group $M C(F)$: a group of the homotopy classes of orientation preserving homeomorphisms.
$M C(F)$ acts on $T(F)$ by outer automorphisms of $\pi_{1}(F)$.

The goal is to find a system of coordinates on $T(F)$, so that the action of $M C(F)$ is realized in the simplest possible way.

Penner coordinates in the standard situation

R. Penner's work in the 1980s: a construction of coordinates associated to the ideal triangulation of F :

Hyperbolic

Supergeometry

so that one assigns one positive number λ-length for every edge.
This construction provides coordinates for the decorated Teichmüller space:

$$
\tilde{T}(F)=\mathbb{R}_{+}^{s} \times T(F)
$$

Ptolemy transformations

The action of $M C(F)$ can be described combinatorially using elementary transformations called flips:

Ptolemy relation: ef $=a c+b d$

In order to obtain coordinates on $T(F)$, one has to consider shear coordinates $z_{e}=\log \left(\frac{a c}{b d}\right)$, which are subjects to certain linear constraints.

Hyperbolic

Supergeometry

Coordinates on Super-Teichmüller space

Super McShane identity

$\mathcal{N}=1$ Super-Teichmüller space

From now on let

$$
S T(F)=\operatorname{Hom}^{\prime}\left(\pi_{1}(F), \operatorname{OSp}(1 \mid 2)\right) / \operatorname{OSp}(1 \mid 2)
$$

Super-Fuchsian representations comprising Hom' are defined to be those whose projections

$$
\pi_{1} \rightarrow \operatorname{OSp}(1 \mid 2) \rightarrow \operatorname{SL}(2, \mathbb{R}) \rightarrow \operatorname{PSL}(2, \mathbb{R})
$$

are Fuchsian groups, corresponding to F.
Trivial bundle $S \tilde{T}(F)=\mathbb{R}_{+}^{s} \times S T(F)$ is called the decorated super-Teichmüller space.

Unlike (decorated) Teichmüller space, $S T(F)(S \tilde{T}(F))$ has $2^{2 g+s-1}$ connected components labeled by spin structures on F

Hyperbolic

Supergeometry

$\mathcal{N}=1$ Super-Teichmüller space

From now on let

$$
S T(F)=\operatorname{Hom}^{\prime}\left(\pi_{1}(F), \operatorname{OSp}(1 \mid 2)\right) / \operatorname{OSp}(1 \mid 2)
$$

Super-Fuchsian representations comprising Hom' are defined to be those whose projections

$$
\pi_{1} \rightarrow \operatorname{OSp}(1 \mid 2) \rightarrow \operatorname{SL}(2, \mathbb{R}) \rightarrow \operatorname{PSL}(2, \mathbb{R})
$$

are Fuchsian groups, corresponding to F.
Trivial bundle $S \tilde{T}(F)=\mathbb{R}_{+}^{s} \times S T(F)$ is called the decorated super-Teichmüller space.

Unlike (decorated) Teichmüller space, $S T(F)(S \tilde{T}(F))$ has $2^{2 g+s-1}$ connected components labeled by spin structures on F.

Hyperbolic

Supergeometry

Orbits of 4 points in L_{0}^{+}: basic calculation

Suppose points A, B, C are put in the standard position.
The 4th point D, so that two new λ - lengths are c, d.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Fixing the sign of θ, we fix the sign of Manin invariant σ in terms of coordinates of D.

Important observation: if we turn the picture upside down, then

Orbits of 4 points in L_{0}^{+}: basic calculation

Suppose points A, B, C are put in the standard position.
The 4th point D, so that two new λ - lengths are c, d.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Fixing the sign of θ, we fix the sign of Manin invariant σ in terms of coordinates of D.

Important observation: if we turn the picture upside down, then

$$
(\theta, \sigma) \rightarrow(\sigma,-\theta)
$$

Recursive procedure and equivariant lift

For every quadrilateral $A B C D$, if there is a direction from σ to θ then the lift is given by the picture from the previous slide up to post-composition with the element of $\operatorname{OSp}(1 \mid 2)$.

The construction of lift ℓ from H^{+}with data to Minkowski space can be done in a recursive way:

Such lift is unique up to post-composition with $\operatorname{OSp}(1 \mid 2)$ group element and it is π_{1}-equivariant. This allows us to construct representation of π_{1} in $\operatorname{OSP}(1 \mid 2)$, based on the provided data.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Ideal triangulations and trivalent fatgraphs

Dual to each other:

- Ideal triangulation of F : triangulation Δ of F with punctures at the vertices, so that each arc connecting punctures is not homotopic to a point rel punctures.
- Trivalent fatgraph: trivalent graph τ with cyclic orderings on half-edges about each vertex.
$\tau=\tau(\Delta)$, if the folowing is true:

1) one fatgraph vertex per triangle
2) one edge of fatgraph intersects one shared edge of triangulation.

Eataronh for $E 1$

\square Eatcronh for E^{3}

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$

Spin structures

Spaces

Anton Zeitlin

There are several ways to describe spin structures on F :

- D. Johnson (1980):

Quadratic forms $q: H_{1}\left(F, \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$, which are quadratic with respect to the intersection pairing $\cdot: H_{1} \otimes H_{1} \rightarrow \mathbb{Z}_{2}$, i.e. $q(a+b)=q(a)+q(b)+a \cdot b$ if $a, b \in H_{1}$.
-S. Natanzon:
A spin structure on a uniformized surface $F=U / \Gamma$ is determined by a lift $\tilde{\rho}: \pi_{1} \rightarrow S L(2, \mathbb{R})$ of $\rho: \pi_{1} \rightarrow P S L_{2}(\mathbb{R})$. Quadratic form q is computed using the following rules: trace $\tilde{\rho}(\gamma)>0$ if and only if $q([\gamma]) \neq 0$, where $[\gamma] \in H_{1}$ is the image of $\gamma \in \pi_{1}$ under the mod two Hurewicz map.

- D. Cimasoni and N. Reshetikhin (2007):

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive a formula for the quadratic form in terms of that combinatorial data.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane

 identity$\mathrm{N}=$?
super-Teichmüller theory

Open problems

Spin structures

There are several ways to describe spin structures on F :

- D. Johnson (1980):

Quadratic forms $q: H_{1}\left(F, \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$, which are quadratic with respect to the intersection pairing $\cdot: H_{1} \otimes H_{1} \rightarrow \mathbb{Z}_{2}$, i.e. $q(a+b)=q(a)+q(b)+a \cdot b$ if $a, b \in H_{1}$.

- S. Natanzon:

A spin structure on a uniformized surface $F=\mathcal{U} / \Gamma$ is determined by a lift $\tilde{\rho}: \pi_{1} \rightarrow S L(2, \mathbb{R})$ of $\rho: \pi_{1} \rightarrow P S L_{2}(\mathbb{R})$. Quadratic form q is computed using the following rules: trace $\tilde{\rho}(\gamma)>0$ if and only if $q([\gamma]) \neq 0$, where $[\gamma] \in H_{1}$ is the image of $\gamma \in \pi_{1}$ under the mod two Hurewicz map.

- D. Cimasoni and N. Reshetikhin (2007)

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive a formula for the quadratic form in terms of that combinatorial data.

Spin structures

There are several ways to describe spin structures on F :

- D. Johnson (1980):

Quadratic forms $q: H_{1}\left(F, \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$, which are quadratic with respect to the intersection pairing $: H_{1} \otimes H_{1} \rightarrow \mathbb{Z}_{2}$, i.e. $q(a+b)=q(a)+q(b)+a \cdot b$ if $a, b \in H_{1}$.
-S. Natanzon:
A spin structure on a uniformized surface $F=\mathcal{U} / \Gamma$ is determined by a lift $\tilde{\rho}: \pi_{1} \rightarrow S L(2, \mathbb{R})$ of $\rho: \pi_{1} \rightarrow P S L_{2}(\mathbb{R})$. Quadratic form q is computed using the following rules: trace $\tilde{\rho}(\gamma)>0$ if and only if $q([\gamma]) \neq 0$, where $[\gamma] \in H_{1}$ is the image of $\gamma \in \pi_{1}$ under the mod two Hurewicz map.

- D. Cimasoni and N. Reshetikhin (2007):

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive a formula for the quadratic form in terms of that combinatorial data.

Spin structures

There are several ways to describe spin structures on F :

- D. Johnson (1980):

Quadratic forms $q: H_{1}\left(F, \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$, which are quadratic with respect to the intersection pairing $: H_{1} \otimes H_{1} \rightarrow \mathbb{Z}_{2}$, i.e. $q(a+b)=q(a)+q(b)+a \cdot b$ if $a, b \in H_{1}$.

- S. Natanzon:

A spin structure on a uniformized surface $F=\mathcal{U} / \Gamma$ is determined by a lift $\tilde{\rho}: \pi_{1} \rightarrow S L(2, \mathbb{R})$ of $\rho: \pi_{1} \rightarrow P S L_{2}(\mathbb{R})$. Quadratic form q is computed using the following rules: trace $\tilde{\rho}(\gamma)>0$ if and only if $q([\gamma]) \neq 0$, where $[\gamma] \in H_{1}$ is the image of $\gamma \in \pi_{1}$ under the mod two Hurewicz map.

- D. Cimasoni and N. Reshetikhin (2007):

Combinatorial description of spin structures in terms of the so-called Kasteleyn orientations and dimer configurations on the one-skeleton of a suitable CW decomposition of F. They derive a formula for the quadratic form in terms of that combinatorial data.

Simplest combinatorial description

We gave a substantial simplification of the combinatorial formulation of spin structures on F (one of the main results of R. Penner, A. Zeitlin, arXiv:1509.06302):

Equivalence classes $\mathcal{O}(\tau)$ of all orientations on a trivalent fatgraph spine $\tau \subset F$, where the equivalence relation is generated by reversing the orientation of each edge incident on some fixed vertex, with the added bonus of a computable evolution under flips:

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$

Coordinates on $S \tilde{T}(F)$

Fix a surface $F=F_{g}^{s}$ as above and

- $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathcal{O}(\tau)$ determines the component C of $S \tilde{T}(F)$

Then there are global affine coordinates on C :

- one even coordinate called a λ-length for each edge
- one odd coordinate called a μ-invariant for each vertex of τ,
the latter of which are taken modulo an overall change of sign
Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above λ-lengths and μ-invariants establish a real-analytic homeomorphism

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Coordinates on $S \tilde{T}(F)$

Fix a surface $F=F_{g}^{s}$ as above and

- $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathcal{O}(\tau)$ determines the component C of $S \tilde{T}(F)$

Then there are global affine coordinates on C :

- one even coordinate called a λ-length for each edge
- one odd coordinate called a μ-invariant for each vertex of τ, the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above λ-lengths and μ-invariants establish a real-analytic homeomorphism

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Coordinates on $S \tilde{T}(F)$

Fix a surface $F=F_{g}^{s}$ as above and

- $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathcal{O}(\tau)$ determines the component C of $S \tilde{T}(F)$

Then there are global affine coordinates on C :

- one even coordinate called a λ-length for each edge
- one odd coordinate called a μ-invariant for each vertex of τ, the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above λ-lengths and μ-invariants establish a real-analytic
homeomorphism

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Coordinates on $S \tilde{T}(F)$

Fix a surface $F=F_{g}^{s}$ as above and

- $\tau \subset F$ is some trivalent fatgraph spine
- ω is an orientation on the edges of τ whose class in $\mathcal{O}(\tau)$ determines the component C of $S \tilde{T}(F)$

Then there are global affine coordinates on C :

- one even coordinate called a λ-length for each edge
- one odd coordinate called a μ-invariant for each vertex of τ, the latter of which are taken modulo an overall change of sign.

Alternating the sign in one of the fermions corresponds to the reflection on the spin graph.

The above λ-lengths and μ-invariants establish a real-analytic homeomorphism

$$
C \rightarrow \mathbb{R}_{+}^{6 g-6+3 s \mid 4 g-4+2 s} / \mathbb{Z}_{2}
$$

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Superflips

When all a, b, c, d are different edges of the triangulations of F,

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity

Ptolemy transformations are as follows:

$$
\begin{aligned}
& \text { ef }=(a c+b d)\left(1+\frac{\sigma \theta \sqrt{\chi}}{1+\chi}\right), \\
& \nu=\frac{\sigma+\theta \sqrt{\chi}}{\sqrt{1+\chi}}, \quad \mu=\frac{\sigma \sqrt{\chi}-\theta}{\sqrt{1+\chi}} .
\end{aligned}
$$

$\chi=\frac{a c}{b d}$ denotes the cross-ratio, and the evolution of spin graph follows from the construction associated to the spin graph evolution rule.

- These coordinates are natural in the sense that if $\varphi \in M C(F)$ has induced action $\tilde{\varphi}$ on $\tilde{\Gamma} \in S \tilde{T}(F)$, then $\tilde{\varphi}(\tilde{\Gamma})$ is determined by the orientation and coordinates on edges and vertices of $\varphi(\tau)$ induced by φ from the orientation ω, the λ-lengths and μ-invariants on τ.
- There is an even 2-form on ST(F) which is invariant under super Ptolemy transformations, namely,
\qquad $d \log a \wedge d \log b+d \log b \wedge c$ $d \log c+d \log c \wedge d \log a-(d \theta)^{2}$
where the sum is over all vertices v of τ where the consecutive half edges incident on v in clockwise order have induced λ-lengths a, b, c and θ is the μ-invariant of v.
- Coordinates on ST (F)

Take instead of λ-lengths shear coordinates $z_{e}=\log \left(\frac{a c}{b d}\right)$ for every edge e, which are subject to linear relation: the sum of all z_{e} adjacent to a given vertex $=0$.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

- These coordinates are natural in the sense that if $\varphi \in M C(F)$ has induced action $\tilde{\varphi}$ on $\tilde{\Gamma} \in S \tilde{T}(F)$, then $\tilde{\varphi}(\tilde{\Gamma})$ is determined by the orientation and coordinates on edges and vertices of $\varphi(\tau)$ induced by φ from the orientation ω, the λ-lengths and μ-invariants on τ.
- There is an even 2-form on $S \tilde{T}(F)$ which is invariant under super Ptolemy transformations, namely,
$\omega=\sum_{v} d \log a \wedge d \log b+d \log b \wedge d \log c+d \log c \wedge d \log a-(d \theta)^{2}$,
where the sum is over all vertices v of τ where the consecutive half edges incident on v in clockwise order have induced λ-lengths a, b, c and θ is the μ-invariant of v.
- Coordinates on ST(F)

Take instead of λ-lengths shear coordinates $z_{e}=\log \left(\frac{a c}{b d}\right)$ for every edge e, which are subject to linear relation: the sum of all z_{e} adjacent to a given vertex $=0$.

- These coordinates are natural in the sense that if $\varphi \in M C(F)$ has induced action $\tilde{\varphi}$ on $\tilde{\Gamma} \in S \tilde{T}(F)$, then $\tilde{\varphi}(\tilde{\Gamma})$ is determined by the orientation and coordinates on edges and vertices of $\varphi(\tau)$ induced by φ from the orientation ω, the λ-lengths and μ-invariants on τ.
- There is an even 2-form on $S \tilde{T}(F)$ which is invariant under super Ptolemy transformations, namely,
$\omega=\sum_{v} d \log a \wedge d \log b+d \log b \wedge d \log c+d \log c \wedge d \log a-(d \theta)^{2}$,
where the sum is over all vertices v of τ where the consecutive half edges incident on v in clockwise order have induced λ-lengths a, b, c and θ is the μ-invariant of v.
- Coordinates on ST(F):

Take instead of λ-lengths shear coordinates $z_{e}=\log \left(\frac{a c}{b d}\right)$ for every edge e, which are subject to linear relation: the sum of all z_{e} adjacent to a given vertex $=0$.

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Ramond Decoration

Further reduction of the decoration: $S \tilde{T}(F)=\mathbb{R}_{+}^{6 g+3 s-6 \mid 4 g+2 s-4} / \mathbb{Z}_{2}$ is actually an $\mathbb{R}_{+}^{\left(s \mid n_{R}\right)}$-decoration over physically relevant Teichmüller space.

Here n_{R} is the number of Ramond punctures, which means that the small contour γ surrounding the puncture is such that $q[\gamma]=1$, i.e. $\operatorname{tr}(\tilde{\rho}(\gamma)>0$.

On the level of hyperbolic geometry, the appropriate constraint is that the monodromy group element has to be true parabolic, i.e. to be conjugated to the parabolic element of $S L(2, \mathbb{R})$ subgroup.

We formulated it in terms of invariant constraints on shear coordinates in

. Ip, R. Penner, A. Z., arXiv:1709.06207, Comm. Math. Phys. 371

(2019) 145-157, arXiv:1709.06207

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Ramond Decoration

Further reduction of the decoration: $S \tilde{T}(F)=\mathbb{R}_{+}^{6 g+3 s-6 \mid 4 g+2 s-4} / \mathbb{Z}_{2}$ is actually an $\mathbb{R}_{+}^{\left(s \mid n_{R}\right)}$-decoration over physically relevant Teichmüller space.

Here n_{R} is the number of Ramond punctures, which means that the small contour γ surrounding the puncture is such that $q[\gamma]=1$, i.e. $\operatorname{tr}(\tilde{\rho}(\gamma)>0$.

On the level of hyperbolic geometry, the appropriate constraint is that the monodromy group element has to be true parabolic, i.e. to be conjugated to the parabolic element of $S L(2, \mathbb{R})$ subgroup.

We formulated it in terms of invariant constraints on shear coordinates in

Hyperbolic

 SupergeometryCoordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=$?
super-Teichmüller theory

Open problems

Ramond Decoration

Hyperbolic

Supergeometry
Further reduction of the decoration: $S \tilde{T}(F)=\mathbb{R}_{+}^{6 g+3 s-6 \mid 4 g+2 s-4} / \mathbb{Z}_{2}$ is actually an $\mathbb{R}_{+}^{\left(s \mid n_{R}\right)}$-decoration over physically relevant Teichmüller space.

Here n_{R} is the number of Ramond punctures, which means that the small contour γ surrounding the puncture is such that $q[\gamma]=1$, i.e. $\operatorname{tr}(\tilde{\rho}(\gamma)>0$.

On the level of hyperbolic geometry, the appropriate constraint is that the monodromy group element has to be true parabolic, i.e. to be conjugated to the parabolic element of $S L(2, \mathbb{R})$ subgroup.

We formulated it in terms of invariant constraints on shear coordinates in

Ramond Decoration

Hyperbolic

Further reduction of the decoration: $S \tilde{T}(F)=\mathbb{R}_{+}^{6 g+3 s-6 \mid 4 g+2 s-4} / \mathbb{Z}_{2}$ is actually an $\mathbb{R}_{+}^{\left(s \mid n_{R}\right)}$-decoration over physically relevant Teichmüller space.

Here n_{R} is the number of Ramond punctures, which means that the small contour γ surrounding the puncture is such that $q[\gamma]=1$, i.e. $\operatorname{tr}(\tilde{\rho}(\gamma)>0$.

On the level of hyperbolic geometry, the appropriate constraint is that the monodromy group element has to be true parabolic, i.e. to be conjugated to the parabolic element of $S L(2, \mathbb{R})$ subgroup.

We formulated it in terms of invariant constraints on shear coordinates in:
I. Ip, R. Penner, A. Z., arXiv:1709.06207, Comm. Math. Phys. 371 (2019) 145-157, arXiv:1709.06207

McShane identity

The McShane identity for 1-puctured torus (G. McShane'92):

$$
\frac{1}{2}=\sum_{\gamma} \frac{1}{1+e^{\ell_{\gamma}}}
$$

on a cusped torus, where the sum is over all simple geodesics γ and ℓ_{γ} is the length.

There are many ways to prove it. One proof was given by B.H. Bowditch'96, which uses the so-called Markov triples:

$$
a^{2}+b^{2}+c^{2}=a b c,
$$

the fact that $T(F)$ is identified with the Poincare disk, and the cell complex dual to Farey tessalation:

Hyperbolic

Supergeometry
Coordinates on
Super-Teichmüller space

Super McShane identity

Super analogue of Bowditch construction

Hyperbolic
Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Denote $W_{c}=\theta \sigma$ if the arrow is oriented from σ to θ.

$$
a^{2}+b^{2}+c^{2}+a b W_{c}+a W_{b}+b c W_{a}=h a b c
$$

where h is an invariant we call super semi - perimeter.
Ptolemy relation/edge relation: $c d=a^{2}+b^{2}+a b W_{c}$
The length of the geodesic could be read from the group element:

$$
\left|\operatorname{str}\left(g_{a}\right)+1\right|=2 \cosh \left(\ell_{\gamma_{a}} / 2\right)=r_{a}+r_{a}^{-1}=a h-W_{a}
$$

Super McShane identity

The identity:

$$
\sum_{a}\left(\frac{1}{a h r_{a}}+\frac{W_{a}}{2 a h}\right)=\frac{1}{2}
$$

which translates into:

$$
\sum_{\gamma}\left[\frac{1}{1+e^{\ell_{\gamma}}}+\frac{W_{\gamma}}{4} \frac{\sinh \left(\frac{\ell_{\gamma}}{2}\right)}{\cosh ^{2}\left(\frac{\ell_{\gamma}}{2}\right)}\right]=\frac{1}{2}
$$

where ℓ_{γ} is the superanalogue of geodesic length and W_{γ} is a product of μ-coordinates.
Y. Huang, R. Penner, A. Z., arXiv:1907.09978

Hyperbolic

Supergeometry
Coordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems

Fatgraphs and super-Riemann surfaces

There is a parallel construction, based on Jenkins-Strebel differentials.
How to glue a Riemann surface based on a fatgraph with the metric data?

Jenkins-Strebel differential and the underlying fatgraph \rightarrow
special covering of Riemann surfaces with double overlaps, corresponding to the edges.
M. Kontsevich'92; M. Mulase, M. Penkava'98

In a joint work with A. Schwarz, we

- Explicitly construct deformations for the class of (1|1)-supermanifolds " of middle degree" with punctures as Čech cocycles
- Get in contact with the analogue of Penner's convex hull construction
- Construct $N=1$ SRS using the dualities of (1|1)-supermanifolds/ $N=2$ SRS

Hyperbolic

Supergeometry
Coordinates on
Super-Teichmüller

$\mathcal{N}=2$ super-Teichmüller theory: prerequisites

$\mathcal{N}=2$ super-Teichmüller space is related to $\operatorname{OSP}(2 \mid 2)$ supergroup of rank 2.

It is more useful to work with its 3×3 incarnation, which is isomorphic to $\Psi \ltimes S L(1 \mid 2)_{0}$, where Ψ is a certain automorphism of the Lie algebra $\mathfrak{s l}(1 \mid 2) \simeq \mathfrak{o s p}(2 \mid 2)$.
$S L(1 \mid 2)_{0}$ is a supergroup, consisting of supermatrices

$$
g=\left(\begin{array}{lll}
a & b & \alpha \\
c & d & \beta \\
\gamma & \delta & f
\end{array}\right)
$$

such that $f>0$ and their Berezinian $=1$.
This group acts on the space $\mathbb{C}^{1 \mid 2}$ as superconformal franctional-linear transformations.

As before, $\mathcal{N}=2$ super-Fuchsian groups are the ones whose projections

$$
\pi_{1} \rightarrow O S P(2 \mid 2) \rightarrow G L^{+}(2, \mathbb{R}) \rightarrow S L(2, \mathbb{R}) \rightarrow \operatorname{PSL}(2, \mathbb{R})
$$

are Fuchsian.

Note, that the pure bosonic part of $S L(1 \mid 2)_{0}$ is $G L^{+}(2, \mathbb{R})$.
Therefore, the construction of coordinates requires a new notion: \mathbb{R}_{+}-graph connection.

A G-graph connection on τ is the assignment $h_{e} \in G$ to each oriented edge e of τ so that $h_{\bar{e}}=h_{e}^{-1}$ if \bar{e} is the opposite orientation to e. Two assignments $\left\{h_{e}\right\},\left\{h_{e}^{\prime}\right\}$ are equivalent iff there are $t_{v} \in G$ for each vertex v of τ such that $h_{e}^{\prime}=t_{v} h_{e} t_{w}^{-1}$ for each oriented edge $e \in \tau$ with initial point v and terminal point w.

The moduli space of flat G-connections on F is isomorphic to the space of equivalent G-graph connections on τ.

By the way, spin structures can be identified with equivalence classes of \mathbb{Z}_{2}-graph connections.

Hyperbolic

Supergeometry

Data on triangulation/fatgraphs:

- One positive parameter per edge of fatgraph/triangulation
- Two odd parameters per triangle
- Two spin structures: generated by reflection of signs and the permutation of odd parameters
- \mathbb{R}_{+}-graph connection

Hyperbolic

Supergeometry

Generic Ptolemy transformations are:

and the transformation formulas are as follows:

$$
\begin{gathered}
e f=(a c+b d)\left(1+\frac{h_{e}^{-1} \sigma_{1} \theta_{2}}{2\left(\sqrt{\chi}+\sqrt{\chi}{ }^{-1}\right)}+\frac{h_{e} \sigma_{2} \theta_{1}}{2\left(\sqrt{\chi}+\sqrt{\chi}^{-1}\right)}\right), \\
\mu_{1}=\frac{h_{e} \theta_{1}+\sqrt{\chi} \sigma_{1}}{\mathcal{D}}, \quad \mu_{2}=\frac{h_{e}^{-1} \theta_{2}+\sqrt{\chi} \sigma_{2}}{\mathcal{D}}, \\
\nu_{1}=\frac{\sigma_{1}-\sqrt{\chi} h_{e} \theta_{1}}{\mathcal{D}}, \quad \nu_{2}=\frac{\sigma_{2}-\sqrt{\chi} h_{e}^{-1} \theta_{2}}{\mathcal{D}}, \\
h_{a}^{\prime}=\frac{h_{a}}{h_{e} c_{\theta}}, \quad h_{b}^{\prime}=\frac{h_{b} c_{\theta}}{h_{e}}, \quad h_{c}^{\prime}=h_{c} \frac{c_{\theta}}{c_{\mu}}, \quad h_{d}^{\prime}=h_{d} \frac{c_{\nu}}{c_{\theta}}, \quad h_{f}=\frac{c_{\sigma}}{c_{\theta}^{2}},
\end{gathered}
$$

where

$$
\begin{gathered}
\mathcal{D}:=\sqrt{1+\chi+\frac{\sqrt{\chi}}{2}\left(h_{e}^{-1} \sigma_{1} \theta_{2}+h_{e} \sigma_{2} \theta_{1}\right)}, \\
c_{\theta}:=1+\frac{\theta_{1} \theta_{2}}{6} .
\end{gathered}
$$

Anton Zeitlin

Hyperbolic

Supergeometry
Coordinates on
Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Open problems/directions

1) Cluster superalgebras
2) Weil-Petersson-form in $\mathcal{N}=2$ case
3) Quantization of super-Teichmüller spaces

Hyperbolic
Supergeometry
Coordinates on
4) Analogues of Weil-Petersson volumes
5) Relation to Strebel theory
6) Quasi-abelianization to $G L(1 \mid 1) /$ spectral network approach in the style of Gaiotto-Moore-Neitzke

Hyperbolic

 SupergeometryCoordinates on Super-Teichmüller space

Super McShane identity
$\mathrm{N}=2$
super-Teichmüller theory

Thank you!

Open problems

