Introduction
Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical

Anton M. Zeitlin

Louisiana State University

University of South Alabama
Mobile
October 14, 2023

Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p :

Hamiltonian: $\quad H=\frac{p^{2}+q^{2}}{2}$,
Poisson bracket: $\quad\{F, G\}=\frac{\partial F}{\partial p} \frac{\partial G}{\partial q}-\frac{\partial G}{\partial p} \frac{\partial F}{\partial q}$.

Introduction
Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Action-angle variables: polar coordinates in (q, p)-space.
Energy level set: $L_{E}=\left\{p^{2}+q^{2}=E\right\}$ is a circle.

Equations of motion for action-angle variables (H, ϕ) :

Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p :

Hamiltonian: $\quad H=\frac{p^{2}+q^{2}}{2}$,
Poisson bracket: $\quad\{F, G\}=\frac{\partial F}{\partial p} \frac{\partial G}{\partial q}-\frac{\partial G}{\partial p} \frac{\partial F}{\partial q}$.

Equations of motion: $\left.\quad \begin{array}{l}\frac{d q}{d t}=\{H, q\}=p \\ \frac{d p}{d t}=\{H, p\}=-q\end{array}\right\} \Rightarrow \frac{d^{2} q}{d t^{2}}+q=0$

Action-angle variables: polar coordinates in (q, p)-space.
Energy level set: $L_{E}=\left\{p^{2}+q^{2}=E\right\}$ is a circle.
Equations of motion for action-angle variables (H, ϕ):

Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p :

Hamiltonian: $\quad H=\frac{p^{2}+q^{2}}{2}$,
Poisson bracket: $\quad\{F, G\}=\frac{\partial F}{\partial p} \frac{\partial G}{\partial q}-\frac{\partial G}{\partial p} \frac{\partial F}{\partial q}$.

Equations of motion: $\left.\quad \begin{array}{l}\frac{d q}{d t}=\{H, q\}=p \\ \frac{d p}{d t}=\{H, p\}=-q\end{array}\right\} \Rightarrow \frac{d^{2} q}{d t^{2}}+q=0$

Action-angle variables: polar coordinates in (q, p)-space.
Energy level set: $L_{E}=\left\{p^{2}+q^{2}=E\right\}$ is a circle.

Example of integrable system: harmonic oscillator

2-dimensional phase space with coordinate q and momentum p :
Hamiltonian: $\quad H=\frac{p^{2}+q^{2}}{2}$,
Poisson bracket: $\quad\{F, G\}=\frac{\partial F}{\partial p} \frac{\partial G}{\partial q}-\frac{\partial G}{\partial p} \frac{\partial F}{\partial q}$.

Equations of motion: $\left.\quad \begin{array}{l}\frac{d q}{d t}=\{H, q\}=p \\ \frac{d p}{d t}=\{H, p\}=-q\end{array}\right\} \Rightarrow \frac{d^{2} q}{d t^{2}}+q=0$

Action-angle variables: polar coordinates in (q, p)-space.
Energy level set: $L_{E}=\left\{p^{2}+q^{2}=E\right\}$ is a circle.
Equations of motion for action-angle variables (H, ϕ) :

$$
\frac{d \phi}{d t}=\omega, \quad \frac{d H}{d t}=0
$$

Classical integrable systems: what are they?

Symplectic $2 n$-manifold M : phase space, which has information of coordinates and momenta of a physical system.

Equations of motion:

$$
\frac{d f}{d t}=\{H, f\}
$$

Integrability: family of conserved quantities: $\left\{F_{i}\right\}_{i=1}^{n}$:

$$
\left\{F_{i}, F_{j}\right\}=0, \quad F_{1}=H
$$

Liouville-Arnold theorem:

- Compact connected components of $L_{c}=\left\{F_{i}=c_{i}\right\}_{i=1}^{n}$ are diffeomorphic to \mathbb{T}^{n}.
- Existence of action-angle variables $\left\{I_{i}\right\}_{i=1}^{n},\left\{\phi^{i}\right\}_{i=1}^{n}$ in the neighborhood of L_{c}

Classical integrable systems: what are they?

Symplectic $2 n$-manifold M : phase space, which has information of coordinates and momenta of a physical system.

Equations of motion:

$$
\frac{d f}{d t}=\{H, f\}
$$

Integrability: family of conserved quantities: $\left\{F_{i}\right\}_{i=1}^{n}$:

$$
\left\{F_{i}, F_{j}\right\}=0, \quad F_{1}=H
$$

Liouville-Arnold theorem:

- Compact connected components of $L_{c}=\left\{F_{i}=c_{i}\right\}_{i=1}^{n}$ are diffeomorphic to \mathbb{T}^{n}.
- Existence of action-angle variables $\left\{I_{i}\right\}_{i=1}^{n},\left\{\phi^{i}\right\}_{i=1}^{n}$ in the neighborhood of L_{c} :

$$
\frac{d \phi^{i}}{d t}=\omega^{i}, \quad \frac{d l_{i}}{d t}=0
$$

Finding action/angle variables is a non-trivial problem.

Explosion of interest in integrable systems: 60s -70s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L],
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for KdV
Celfand L. Dickey'76, V. Dintéd, V. Sokotov'85
Inverse Scattering Method (ISM)

$$
\text { spectral data of } L \rightarrow \text { action-angle variables }
$$

At the same time many finite-dimensional multiparticle integrable systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider, etc.

Introduction
Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Explosion of interest in integrable systems: 60s -70 s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L],
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for KdV .
I. Gelfand, L. Dickey'76; V. Drinfeld, V. Sokolov'85

Inverse Scattering Method (ISM):

Explosion of interest in integrable systems: 60s -70 s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L],
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for KdV .
I. Gelfand, L. Dickey'76; V. Drinfeld, V. Sokolov'85

Inverse Scattering Method (ISM):

$$
\text { spectral data of } L \rightarrow \text { action-angle variables }
$$

At the same time many finite-dimensional multiparticle integrable systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider, etc.

Introduction

Quantum Integrable models
$Q Q$-systems and

Explosion of interest in integrable systems: 60s -70 s

Integrable soliton equations in (1+1)-dimensions, e.g. Korteweg-de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}+6 u u_{x} .
$$

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Miura'67; P. Lax'68;
L. Faddeev, V. Zakharov'71

Lie-theoretic methods through Lax pair formulation:

$$
\frac{d L}{d t}=[A, L]
$$

where $L=-\partial_{x}^{2}+u(x, t)$ for $K d V$.
I. Gelfand, L. Dickey'76; V. Drinfeld, V. Sokolov'85

Inverse Scattering Method (ISM):

$$
\text { spectral data of } L \rightarrow \text { action-angle variables }
$$

At the same time many finite-dimensional multiparticle integrable systems were discovered: Calogero-Moser, Toda, Ruijsennars-Schneider, etc.

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.
Quantization of $(1+1)$-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Introduction
Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.
Quantization of ($1+1$)-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
D-matrix and Yang- Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Introduction
Quantum Integrable models
$Q Q$-systemis and
(G, q)-opers
Quantum/classical duality

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.
Quantization of $(1+1)$-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Quantum Integrable models: $70 \mathrm{~s}-80 \mathrm{~s}$

Quantum integrability:

$$
\left[H_{i}, H_{j}\right]=0, \quad H_{i}: \mathcal{H} \rightarrow \mathcal{H}
$$

Finding action/angle variables \rightarrow simultaneous diagonalization of H_{i}.
Quantization of $(1+1)$-models? Put them on the lattice.
Lattice integrable models \rightarrow new algebraic structures:
R-matrix and Yang-Baxter equation
accompanied with
algebraic Bethe ansatz
lead to the the discovery of Quantum inverse scattering method (QISM) developed by Leningrad School.

That eventually led to the discovery of quantum groups by Drinfeld and Jimbo.

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

90s: Geometrization era begins

Introduction

Quantum Integrable models
$Q Q$-systems and

- Witten's conjecture, proven by Kontsevich, relating intersection numbers on the moduli space of curves and the τ-function of KdV model.
- Givental and collaborators: description of the enumerative geometry of flag varieties (quantum cohomology/quantum K-theory) via classical and quantum multiparticle systems of Toda type.
- Feigin, Frenkel, and collaborators, while studying conformal field theory/representation theory of affine Lie algebras, discovered the relation

Connections on \mathbb{P}^{1} called opers \leftrightarrow Gaudin integrable model That turned out to be an example of the geometric Langlands correspondence.

90s: Geometrization era begins

Introduction

Quantum Integrable models
$Q Q$-systems and

- Witten's conjecture, proven by Kontsevich, relating intersection numbers on the moduli space of curves and the τ-function of KdV model.
- Givental and collaborators: description of the enumerative geometry of flag varieties (quantum cohomology/quantum K-theory) via classical and quantum multiparticle systems of Toda type.
- Feigin, Frenkel, and collaborators, while studying conformal field theory/representation theory of affine Lie algebras, discovered the relation:

Connections on \mathbb{P}^{1} called opers \leftrightarrow Gaudin integrable model That turned out to be an example of the geometric Langlands correspondence.

2000s - geometric representation theory and integrable models

- Nakajima, Schiffmann, Varagnolo, Vasserot...:

Geometric realization of representations of quantum groups on cohomology and K-theory of symplectic resolutions, in particular, on Nakajima quiver varieties.

Okounkov:
"Symplectic resolutions are the Lie algebras of XXI century"

- 2010s: Nekrasov, Shatashvili

Hints from supersymmetric gauge theory \rightarrow geometric realization of quantum integrable models solved by Bethe ansatz.

Okounkov and his school: enumerative geometry of symplectic resolutions.

- Nakajima, Schiffmann, Varagnolo, Vasserot...:

Geometric realization of representations of quantum groups on cohomology and K-theory of symplectic resolutions, in particular, on Nakajima quiver varieties.

Okounkov:
"Symplectic resolutions are the Lie algebras of XXI century"

- 2010s: Nekrasov, Shatashvili:

Hints from supersymmetric gauge theory \rightarrow geometric realization of quantum integrable models solved by Bethe ansatz.

Okounkov and his school: enumerative geometry of symplectic resolutions.

In this talk

- Duality between:
- Finite-dimensional classical integrable systems: (trigonometric) Ruijsennaars-Schenider, Calogero-Moser;
- Quantum integrable models based on quantum groups: XXZ, XXX, (trigonometric) Gaudin quantum integrable models.
- Geometric interpretation and applications.

In collaboration with:

Anton M. Zeitlin

P. Koroteev, P. Pushkar, E. Frenkel, D. Sage, A. Smirnov:

- P. Koroteev, A.Z., The Zoo of Opers and Dualities,
arXiv:2208.08031
- P. Koroteev, A. Z., 3d Mirror Symmetry for Instanton Moduli Spaces,

Comm. Math. Phys.' 23

- P. Koroteev, A.Z., q-Opers, $Q Q$-Systems, and Bethe Ansatz II: Generalized Minors,
J. Reine Angew. Math.'23
- P. Koroteev, A.Z., Toroidal q-Opers,
J. Inst. Math. Jussieu'23
- P. Koroteev, E. Frenkel, D. Sage, A.Z., q-Opers, QQ-Systems, and Bethe Ansatz,
J. Eur. Math. Soc., arXiv:2002.07344
- P. Koroteev, D. Sage, A.Z., (SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys.'21
- P. Koroteev, P. Pushkar, A. Smirnov, A.Z., Quantum K-theory of Quiver Varieties and Many-Body Systems, Selecta Math. '21
- P. Koroteev, A.Z., qKZ/tRS Duality via Quantum K-Theoretic Counts,

Math. Res. Lett.' 21

- P. Pushkar, A. Smirnov, A.Z., Baxter Q-operator from quantum K-theory,

Introduction

Quantum Integrable models
$Q Q$-systems and

Affine algebras and finite-dimensional modules

Let us consider Lie algebra \mathfrak{g}.
The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

The following representations, known as evaluation modules, form a tensor category of \mathfrak{g} :

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

where

- V_{i} are representations of \mathfrak{g}

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Affine algebras and finite-dimensional modules

Introduction

Quantum Integrable models

Let us consider Lie algebra \mathfrak{g}.
The associated loop algebra is $\hat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right]$ and t is known as spectral parameter.

The following representations, known as evaluation modules, form a tensor category of \mathfrak{g} :

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

where

- V_{i} are representations of \mathfrak{g}
- a_{i} are values for t

Quantum groups

Quantum groups:

$$
U_{q}(\hat{\mathfrak{g}})
$$

Introduction

Quantum Integrable models
are deformations of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_{1}, v_{2}}\left(a_{1} / a_{2}\right)$:

$$
V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

Quantum groups

Quantum groups:

$$
U_{q}(\hat{\mathfrak{g}})
$$

are deformations of $U(\hat{\mathfrak{g}})$, with a nontrivial intertwiner $R_{V_{1}, v_{2}}\left(a_{1} / a_{2}\right)$:

$$
V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

which is a rational function of a_{1}, a_{2}, satisfying Yang-Baxter equation:

The generators of $U_{q}(\hat{\mathfrak{g}})$ emerge as matrix elements of R-matrices: FRT construction.

Spin chain models and transfer matrices

Physical space:

$$
\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

Auxiliary spaces: $\{W(u)\}$.
Quantum monodromy matrix:

$$
M(u)=(Z \otimes \operatorname{Id}) \tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\text {phys }}
$$

Here \tilde{R} is the R-matrix, composed with permutation operator, $Z \in e^{\mathfrak{h}}$ - diagonal.

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical

Spin chain models and transfer matrices

Physical space:

$$
\mathcal{H}_{\text {phys }}=V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \cdots \otimes V_{n}\left(a_{n}\right)
$$

Auxiliary spaces: $W(u)$.
Quantum monodromy matrix:

$$
M(u)=(Z \otimes \mathrm{Id}) \tilde{R}_{W(u), \mathcal{H}_{\text {phys }}}: W(u) \otimes \mathcal{H}_{\text {phys }} \rightarrow W(u) \otimes \mathcal{H}_{\mathrm{phys}}
$$

Here \tilde{R} is the R-matrix, composed with permutation operator, $Z \in e^{\mathfrak{h}} \in U_{q}(\hat{\mathfrak{g}})$-diagonal.

Transfer matrix:

$$
T_{W(u)}=\operatorname{Tr}_{W(u)}[M(u)], \quad T_{W(u)}: \mathcal{H}_{\text {phys }} \rightarrow \mathcal{H}_{\text {phys }}
$$

Quantum Integrability

Introduction

Quantum Integrable models

Integrability:

$$
\left[T_{W^{\prime}\left(u^{\prime}\right)}, T_{W(u)}\right]=0
$$

follows from Yang-Baxter relation.

Transfer matrices $T_{W(u)}$ generate Bethe algebra:

Primary goal: diagonalize $\left\{T_{W(u)}\right\}$ simultaneously.

Tool: Bethe ansatz.

Quantum Integrability

Introduction

Quantum Integrable models

Integrability:

$$
\left[T_{W^{\prime}\left(u^{\prime}\right)}, T_{W(u)}\right]=0
$$

follows from Yang-Baxter relation.

Transfer matrices $T_{W(u)}$ generate Bethe algebra:

$$
T_{W(u)}=\sum_{n} u^{n} I_{n}, \quad\left[I_{n}, I_{m}\right]=0
$$

Primary goal: diagonalize $\left\{T_{W(u)}\right\}$ simultaneously.

Tool: Bethe ansatz.

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz:

Central for the QISM.
Developed in Leningrad: late 70s-80s

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz:

Central for the QISM.
Developed in Leningrad: late 70s-80s

- via Frenkel-Reshetikhin (qKZ) equation:
I. Frenkel, N. Reshetikhin ' 92

Geometrization through enumerative geometry of quiver varieties:
N. Nekrasov, S. Shatashvili '09, A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;
P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .'17

- via QQ-systems:
appeared first in the context of qKdV equation and ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel. Hernandez '13,'19

Geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G, q)-opers.

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/elassical duality

Various points of view on Bethe ansatz

- via Algebraic Bethe ansatz:

Central for the QISM.
Developed in Leningrad: late $70 \mathrm{~s}-80 \mathrm{~s}$

- via Frenkel-Reshetikhin (qKZ) equation:
I. Frenkel, N. Reshetikhin '92

Geometrization through enumerative geometry of quiver varieties:
N. Nekrasov, S. Shatashvili '09, A. Okounkov '15; A. Okounkov, A. Smirnov '16; M. Aganagic, A. Okounkov '17;
P. Pushkar, A. Smirnov, A.Z. '16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z .'17

- via QQ-systems:
appeared first in the context of qKdV equation and ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov'98; D. Masoero, A. Raimondo, D. Valeri'16; Frenkel, Hernandez '13,'19

Geometric interpretation of QQ-systems through the difference analogue of connections on the projective line, the so-called (G, q)-opers.
joint work with E. Frenkel, P. Koroteev, D. Sage '18-'22

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

Quantum/classical duality

QQ-systems

Consider Lie algebra \mathfrak{g} of rank r.
Cartan matrix: $\left\{a_{i j}\right\}_{i, j=1, \ldots, r}, a_{i j}=\left\langle\check{\alpha}_{i}, \alpha_{j}\right\rangle$.
QQ-system:

$$
\begin{aligned}
\widetilde{\xi}_{i} Q_{-}^{i}(u) Q_{+}^{i}(q u)-\xi_{i} Q_{-}^{i}(q u) Q_{+}^{i}(u) & =\Lambda_{i}(u) \prod_{j \neq i}\left[\prod_{k=1}^{-a_{i j}} Q_{+}^{j}\left(q^{b_{i j}^{k}} u\right)\right] \\
i & =1, \ldots, r, \quad b_{i j}^{k} \in \mathbb{Z}
\end{aligned}
$$

$\left\{\Lambda_{i}(u), Q_{ \pm}^{i}(u)\right\}_{i=1, \ldots, r^{-}}$polynomials, $\xi_{i}, \widetilde{\xi}_{i}, q \in \mathbb{C}^{\times} ;$ $\left\{\Lambda_{i}(z)\right\}_{i=1, \ldots, r}$-fixed.

Solving for $\left\{Q_{+}^{i}(z)\right\}_{i=1, \ldots, r} ;\left\{Q_{-}^{i}(z)\right\}_{i=1, \ldots, r}$-auxiliary.

$$
\text { If } \mathfrak{g} \text { is of ADE type : }\left\{\begin{array}{l}
b_{i j}=1, i>j \\
b_{i j}=0, i<j
\end{array}\right.
$$

Example: $\mathfrak{g}=\mathfrak{s l}(2)$:

$$
\widetilde{\xi} Q_{-}(u) Q_{+}(q u)-\xi Q_{-}(q u) Q_{+}(u)=\Lambda(u)
$$

In what context do they appear?

- Relations in the extended Grothendieck ring for finite-dimensional representations of $U_{q}(\widehat{\mathfrak{g}})$.
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; E. Frenkel, D. Hernandez '13,'19
- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.
E. Mukhin, A. Varchenko,
- Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \nu_{i}$ P. Pushkar. A. Smirnov, A.Z.'16: P. Koroteev, P. Pushkar. A. Smirnov, A.Z. ${ }^{17}$
- Spectral determinant relations in ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Massero. A. Raimondo, D. Valeri' 16
q-connections on the projective line: (G, q)-opers
\qquad
\qquad

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

Quantum/classical duality

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers
Quantum/classical duality

- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.
E. Mukhin, A. Varchenko,
- Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \bigwedge^{m} \mathcal{V}_{i}$.
- Spectral determinant relations in ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16
- q-connections on the projective line: (G, q)-opers
\qquad

Introduction

Quantumi Integrable models
$Q Q$-systems and (G, q)-opers
Quantum/classical duality

- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.
E. Mukhin, A. Varchenko,
- Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$.
P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
- Spectral determinant relations in ODE/IM correspondence
- q-connections on the projective line: (G, q)-opers

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers
Quantum/classical duality

- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.
E. Mukhin, A. Varchenko,
- Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} \mathcal{V}_{i}$.
P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
- Spectral determinant relations in ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri ' 16
-q-connections on the projective line: (G, q)-opers

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers
Quantum/classical duality

- Bethe ansatz equations for $\mathrm{XXX}, \mathrm{XXZ}$ models: $Q_{ \pm}^{i}$ are eigenvalues of Baxter operators.

```
E. Mukhin, A. Varchenko,
```

- Relations in quantum equivariant K-theory/quantum cohomology of quiver varieties. Baxter operators are generating functions of tautological bundles $\widehat{Q}_{+}^{i}(u)=\sum_{m=0}^{n} u^{m} \Lambda^{m} V_{i}$.
P. Pushkar, A. Smirnov, A.Z.'16; P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
- Spectral determinant relations in ODE/IM correspondence
V. Bazhanov, S. Lukyanov, A. Zamolodchikov '98; D. Masoero, A. Raimondo, D. Valeri '16
- q-connections on the projective line: (G, q)-opers
P. Koroteev, D. Sage, E. Frenkel, A.Z. '18; P. Koroteev, D. Sage, E. Frenkel, A.Z. '20;
P. Koroteev, A.Z. '21; T. Brinson, D. Sage, A.Z. '21

Miura (G, q)-opers and QQ-system

q-gauge transformation on \mathbb{P}^{1} :

$$
A(u) \mapsto g(q u) A(u) g(u)^{-1}
$$

where $A(u) \in G(u) \equiv G(\mathbb{C}(u))$.
Locally, with respect to reduction $\mathcal{F}_{B_{-}}$

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

Quantum/classical duality
$A(u)=n^{\prime}(u) \prod\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)$
Miura condition: another reduction $\mathcal{F}_{B_{+}}$preserved.
(G, q)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(q u) Z v^{-1}(u), \text { where } Z=\prod \zeta_{i}^{\check{\alpha}_{i}}, v(u) \in G(u) \text {. }
$$

Regular singularities: $\left.\phi_{i}(u) \equiv \Lambda_{i}(u)=\prod_{i}\left(u-a_{i}\right) \in \mathbb{C}[u]\right)$.
Turns out that Z-twisted Miura (G, q)-oper with regular singularities has the form:

$$
A(u)=\prod g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=\zeta_{i} \frac{Q_{+}^{i}(q u)}{Q_{+}^{i}(u)} .
$$

Miura (G, q)-opers and QQ-system

q-gauge transformation on \mathbb{P}^{1} :

$$
A(u) \mapsto g(q u) A(u) g(u)^{-1}
$$

where $A(u) \in G(u) \equiv G(\mathbb{C}(u))$.
Locally, with respect to reduction $\mathcal{F}_{B_{-}}$:

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)
$$

Miura condition: another reduction $\mathcal{F}_{B_{+}}$preserved.
(G, q)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely $A(u)=v(q u) Z v^{-1}(u)$, where $Z=\prod \zeta^{\check{\alpha}_{i}}, v(u) \in G^{\prime}(u)$

Regular singularities: $\left.\phi_{i}(u) \equiv \Lambda_{i}(u)=\prod_{i}\left(u-a_{i}\right) \in \mathbb{C}[u]\right)$.
Turns out that Z-twisted Miura (G, q)-oper with regular singularities has the form:

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers
Quantum/classical duality

Miura (G, q)-opers and QQ-system

q-gauge transformation on \mathbb{P}^{1} :

$$
A(u) \mapsto g(q u) A(u) g(u)^{-1}
$$

where $A(u) \in G(u) \equiv G(\mathbb{C}(u))$.
Locally, with respect to reduction $\mathcal{F}_{B_{-}}$:

Introduction

Quantum Integrable models
$Q Q$-systems and

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)
$$

Miura condition: another reduction $\mathcal{F}_{B_{+}}$preserved.
(G, q)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(q u) Z v^{-1}(u), \text { where } Z=\prod_{i} \zeta_{i}^{\check{\alpha}_{i}}, v(u) \in G(u) .
$$

Regular singularities: $\left.\phi_{i}(u) \equiv \Lambda_{i}(u)=\prod_{i}\left(u-a_{i}\right) \in \mathbb{C}[u]\right)$.
Turns out that Z-twisted Miura (G, q)-oper with regular singularities has the form:

Miura (G, q)-opers and QQ-system

q-gauge transformation on \mathbb{P}^{1} :

$$
A(u) \mapsto g(q u) A(u) g(u)^{-1}
$$

where $A(u) \in G(u) \equiv G(\mathbb{C}(u))$.
Locally, with respect to reduction $\mathcal{F}_{B_{-}}$:

Introduction

Quantum integrable models
$Q Q$-systems and (G, q)-opers

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)
$$

Miura condition: another reduction $\mathcal{F}_{B_{+}}$preserved.
(G, q)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(q u) Z v^{-1}(u), \text { where } Z=\prod_{i} \zeta_{i}^{\check{\alpha}_{i}}, v(u) \in G(u) .
$$

Regular singularities: $\left.\phi_{i}(u) \equiv \Lambda_{i}(u)=\prod_{i}\left(u-a_{i}\right) \in \mathbb{C}[u]\right)$.
Turns out that Z-twisted Miura (G, q)-oper with regular singularities has the form:

Miura (G, q)-opers and QQ-system

q-gauge transformation on \mathbb{P}^{1} :

$$
A(u) \mapsto g(q u) A(u) g(u)^{-1}
$$

where $A(u) \in G(u) \equiv G(\mathbb{C}(u))$.
Locally, with respect to reduction $\mathcal{F}_{B_{-}}$:

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

$$
A(u)=n^{\prime}(u) \prod_{i}\left[\phi_{i}(u)^{\check{\alpha}_{i}} s_{i}\right] n(u), \phi_{i}(u) \in \mathbb{C}(u), n(u), n^{\prime}(u) \in N_{-}(u)
$$

Miura condition: another reduction $\mathcal{F}_{B_{+}}$preserved.
(G, q)-oper is Z-twisted if it is gauge equivalent to $Z \in H$, namely

$$
A(u)=v(q u) Z v^{-1}(u), \text { where } Z=\prod_{i} \zeta_{i}^{\check{\alpha}_{i}}, v(u) \in G(u) .
$$

Regular singularities: $\left.\phi_{i}(u) \equiv \Lambda_{i}(u)=\prod_{i}\left(u-a_{i}\right) \in \mathbb{C}[u]\right)$.
Turns out that Z-twisted Miura (G, q)-oper with regular singularities has the form:

$$
A(u)=\prod_{i} g_{i}^{\check{\alpha}_{i}}(u) e^{\frac{\Lambda_{i}(u)}{g_{i}(u)} e_{i}}, \quad g_{i}(u)=\zeta_{i} \frac{Q_{+}^{i}(q u)}{Q_{+}^{i}(u)}
$$

$(S L(r+1), q)$-opers: alternative definition

A $(G L(r+1), q)$-oper on \mathbb{P}^{1} is a triple $\left(A, E, \mathcal{L}_{\bullet}\right)$, where E is a vector bundle of rank $r+1$ and \mathcal{L}_{\bullet} is the corresponding complete flag of the vector bundles,

$$
\mathcal{L}_{r+1} \subset \ldots \subset \mathcal{L}_{i+1} \subset \mathcal{L}_{i} \subset \mathcal{L}_{i-1} \subset \ldots \subset E=\mathcal{L}_{1}
$$

where \mathcal{L}_{r+1} is a line bundle, so that $A \in \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^{1}}}\left(E, E^{q}\right)$ satisfies the following conditions:

- $A \cdot \mathcal{L}_{i} \subset \mathcal{L}_{i-1}$,
- $\bar{A}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i+1} \rightarrow \mathcal{L}_{i-1} / \mathcal{L}_{i}$ is an isomorphism.

An $(S L(r+1), q)$-oper is a $(G L(r+1), q)$-oper with the condition that $\operatorname{det}(A)=1$.

Regular singularities: \bar{A}_{i} allowed to have zeroes at zeroes of $\Lambda_{i}(u)$

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers
Quantum/classical duality QQ-system:

$(S L(r+1), q)$-opers: alternative definition

A $(G L(r+1), q)$-oper on \mathbb{P}^{1} is a triple $\left(A, E, \mathcal{L}_{\bullet}\right)$, where E is a vector bundle of rank $r+1$ and \mathcal{L}_{\bullet} is the corresponding complete flag of the vector bundles,

$$
\mathcal{L}_{r+1} \subset \ldots \subset \mathcal{L}_{i+1} \subset \mathcal{L}_{i} \subset \mathcal{L}_{i-1} \subset \ldots \subset E=\mathcal{L}_{1}
$$

where \mathcal{L}_{r+1} is a line bundle, so that $A \in \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^{1}}}\left(E, E^{q}\right)$ satisfies the following conditions:

- $A \cdot \mathcal{L}_{i} \subset \mathcal{L}_{i-1}$,
- $\bar{A}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i+1} \rightarrow \mathcal{L}_{i-1} / \mathcal{L}_{i}$ is an isomorphism.

An $(S L(r+1), q)$-oper is a $(G L(r+1), q)$-oper with the condition that $\operatorname{det}(A)=1$.

Regular singularities: \bar{A}_{i} allowed to have zeroes at zeroes of $\Lambda_{i}(u)$.
\square QQ-system:

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

$(S L(r+1), q)$-opers: alternative definition

A $(G L(r+1), q)$-oper on \mathbb{P}^{1} is a triple $\left(A, E, \mathcal{L}_{\bullet}\right)$, where E is a vector bundle of rank $r+1$ and \mathcal{L}_{\bullet} is the corresponding complete flag of the vector bundles,

$$
\mathcal{L}_{r+1} \subset \ldots \subset \mathcal{L}_{i+1} \subset \mathcal{L}_{i} \subset \mathcal{L}_{i-1} \subset \ldots \subset E=\mathcal{L}_{1}
$$

where \mathcal{L}_{r+1} is a line bundle, so that $A \in \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^{1}}}\left(E, E^{q}\right)$ satisfies the following conditions:

- $A \cdot \mathcal{L}_{i} \subset \mathcal{L}_{i-1}$,
- $\bar{A}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i+1} \rightarrow \mathcal{L}_{i-1} / \mathcal{L}_{i}$ is an isomorphism.

An $(S L(r+1), q)$-oper is a $(G L(r+1), q)$-oper with the condition that $\operatorname{det}(A)=1$.

Regular singularities: \bar{A}_{i} allowed to have zeroes at zeroes of $\Lambda_{i}(u)$. QQ-system:
$\xi_{i+1} Q_{i}^{+}(q u) Q_{i}^{-}(u)-\xi_{i} Q_{i}^{+}(u) Q_{i}^{-}(q u)=\Lambda_{i}(u) Q_{i-1}^{+}(u) Q_{i+1}^{+}(q u), i=1, \ldots, r$

$$
\xi_{1}=\frac{1}{\zeta_{1}}, \quad \xi_{2}=\frac{\zeta_{1}}{\zeta_{2}}, \quad \ldots \quad \xi_{r}=\frac{\zeta_{r-1}}{\zeta_{r}}, \quad \xi_{r+1}=\frac{1}{\zeta_{r}}
$$

Introduction

Quantum integrable models
$Q Q$-systems and (G, q)-opers

Bethe coordinates (QQ-system) vs coordinates of line bundle \mathcal{L}_{r+1} :
Space of functions on Z-twisted Miura ($S L(r+1$), q)-opers \downarrow

Space of functions on the intersection of two Lagrangian subvarieties in trigonometric Ruijsenaars-Schneider (tRS) phase space.

Introduction

Quantum Integrable models

QQ-systems and (G, q)-opers

Quantum/classical duality

Bethe equations $\leftrightarrow\left\{H_{k}\left(\left\{\xi_{i}\right\},\left\{p_{i}\right\}, q\right)=f_{k}\left(\left\{a_{i}\right\}\right)\right\}$
Here H_{k} are tRS Hamiltonians, involutive w.r.t. $\Omega=\sum_{k} \frac{d x_{k}}{x_{k}} \wedge \frac{d p_{k}}{p_{k}}$

and f_{k} are elementary symmetric functions of a_{i}

Bethe coordinates (QQ-system) vs coordinates of line bundle \mathcal{L}_{r+1} :

Space of functions on Z-twisted Miura (SL(r+1),q)-opers

$$
\uparrow
$$

Space of functions on the intersection of two Lagrangian subvarieties in trigonometric Ruijsenaars-Schneider (tRS) phase space.

$$
\text { Bethe equations } \leftrightarrow\left\{H_{k}\left(\left\{\xi_{i}\right\},\left\{p_{i}\right\}, q\right)=f_{k}\left(\left\{a_{i}\right\}\right)\right\}
$$

Here H_{k} are tRS Hamiltonians, involutive w.r.t. $\Omega=\sum_{k} \frac{d x_{k}}{\frac{x_{k}}{p_{k}}} \wedge \frac{d p_{k}}{p_{k}}$:

$$
H_{k}=\sum_{\substack{J \subset\{1, \ldots, r+1\} \\|J|=k}} \prod_{\substack{i \in J \\ j \neq J}} \frac{x_{i}-q x_{j}}{x_{i}-x_{j}} \prod_{m \in J} p_{m}
$$

and f_{k} are elementary symmetric functions of a_{i}.

[^0]
Duality in many-body formalism

Calogero-Moser phase space: subset of $G L(r+1 ; \mathbb{C}) \times G L(r+1 ; \mathbb{C}) \times \mathbb{C}^{r+1} \times \mathbb{C}^{r+1}$:

$$
q M T-T M=u \otimes v^{T}
$$

When M is a diagonal matrix with eigenvalues $\xi_{1}, \ldots, \xi_{r+1}$, the components of matrix T are:

Introducing the momenta: $p_{i}=-u_{i} v_{i} \frac{\prod_{\neq i}}{\prod\left(\xi_{i}-\xi_{k} q\right)}$, we obtain:

Duality:

Or, in other words:

$$
q \mapsto q^{-1}, \quad\left(\left\{\xi_{i}\right\},\left\{p_{i}\right\}\right) \rightarrow\left(\left\{a_{i}\right\},\left\{\tilde{p}_{i}\right\}\right)
$$

Duality in many-body formalism

Calogero-Moser phase space: subset of $G L(r+1 ; \mathbb{C}) \times G L(r+1 ; \mathbb{C}) \times \mathbb{C}^{r+1} \times \mathbb{C}^{r+1}$:

$$
q M T-T M=u \otimes v^{T}
$$

When M is a diagonal matrix with eigenvalues $\xi_{1}, \ldots, \xi_{r+1}$, the components of matrix T are:

$$
T_{i j}=\frac{u_{i} v_{j}}{q \xi_{i}-\xi_{j}}
$$

Introducing the momenta: $p_{i}=-u_{i} v_{i} \frac{k \neq i}{\Pi\left(\xi_{i}-\xi_{k} q\right)}$, we obtain:

Duality:

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Duality in many-body formalism

Calogero-Moser phase space: subset of $G L(r+1 ; \mathbb{C}) \times G L(r+1 ; \mathbb{C}) \times \mathbb{C}^{r+1} \times \mathbb{C}^{r+1}$:

$$
q M T-T M=u \otimes v^{T}
$$

When M is a diagonal matrix with eigenvalues $\xi_{1}, \ldots, \xi_{r+1}$, the components of matrix T are:

$$
T_{i j}=\frac{u_{i} v_{j}}{q \xi_{i}-\xi_{j}}
$$

Introducing the momenta: $p_{i}=-u_{i} v_{i} \frac{\prod_{k \neq i}\left(\xi_{i}-\xi_{k}\right)}{\prod_{k}\left(\xi_{i}-\xi_{k} q\right)}$, we obtain:

$$
\operatorname{det}\left(z-T\left(\xi_{i}, p_{i}, q\right)\right)=\sum_{k=0}^{r+1}(-1)^{k} z^{n-k} H_{k}\left(\xi_{i}, p_{i}, q\right)
$$

Duality:

Or, in other words:

Introduction

Quantum integrable models
$Q Q$-systems and

Duality in many-body formalism

Calogero-Moser phase space: subset of $G L(r+1 ; \mathbb{C}) \times G L(r+1 ; \mathbb{C}) \times \mathbb{C}^{r+1} \times \mathbb{C}^{r+1}$:

$$
q M T-T M=u \otimes v^{T}
$$

When M is a diagonal matrix with eigenvalues $\xi_{1}, \ldots, \xi_{r+1}$, the components of matrix T are:

$$
T_{i j}=\frac{u_{i} v_{j}}{q \xi_{i}-\xi_{j}}
$$

Introducing the momenta: $p_{i}=-u_{i} v_{i} \frac{\prod_{k \neq i}\left(\xi_{i}-\xi_{k}\right)}{\prod_{k}\left(\xi_{i}-\xi_{k} q\right)}$, we obtain:

$$
\operatorname{det}\left(z-T\left(\xi_{i}, p_{i}, q\right)\right)=\sum_{k=0}^{r+1}(-1)^{k} z^{n-k} H_{k}\left(\xi_{i}, p_{i}, q\right)
$$

Duality:

$$
q \mapsto q^{-1}, \quad M \mapsto T, \quad T \mapsto M .
$$

Or, in other words:

$$
q \mapsto q^{-1}, \quad\left(\left\{\xi_{i}\right\},\left\{p_{i}\right\}\right) \rightarrow\left(\left\{a_{i}\right\},\left\{\tilde{p}_{i}\right\}\right)
$$

Zoo of dualities

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Application: 3D mirror symmetry

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

$$
K_{T}^{(q)}(N) \cong K_{T^{\prime}}^{(q)}\left(N^{\prime}\right) .
$$

T-parameters \leftrightarrow Kähler parameters (parameters of deformation).
For Nakajima quiver varieties in type A :
$K_{T}^{(\rho)}(N)=$ Bethe älgebra.
Notable example: $T^{*} F_{r+1}$-self-dual.

We used quantum/classical duality to establish 3d mirror symmetry for A-type quiver varieties and used it to prove 3d mirror symmetry for ADHM spaces, in particular Hilbert scheme of points:
P. Koroteev, A.M.Z., 3D Mirror symmetry for instanton moduli spaces, Commun. Math. Phys. 403 (2023) 1005-1068

Quantum/classical duality

Application: 3D mirror symmetry

This is a duality between two types of symplectic resolutions: N, N^{\prime}.
On enumerative level:

$$
K_{T}^{(q)}(N) \cong K_{T^{\prime}}^{(q)}\left(N^{\prime}\right)
$$

T-parameters \leftrightarrow Kähler parameters (parameters of deformation).

For Nakajima quiver varieties in type A $K_{T}^{(a)}(N)=$ Bethe algebra.

Notable example: $T^{*} F I_{r+1}$-self-dual.

> We used quantum/classical duality to establish 3d mirror symmetry for A-type quiver varieties and used it to prove 3d mirror symmetry for ADHM spaces, in particular Hilbert scheme of points:
P. Korotecv, A.M.Z., 30 Mirror symmetry for instanton moduli spaces, Commun. Math. Phys. 403 (2023) 1005-1068

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

Quantum/classical duality

Application: 3D mirror symmetry

This is a duality between two types of symplectic resolutions: N, N^{\prime}.
On enumerative level:

$$
K_{T}^{(q)}(N) \cong K_{T^{\prime}}^{(q)}\left(N^{\prime}\right)
$$

T-parameters \leftrightarrow Kähler parameters (parameters of deformation).

For Nakajima quiver varieties in type A :

$$
K_{T}^{(q)}(N)=\text { Bethe algebra. }
$$

Notable example: $T^{*} F I_{r+1}$-self-dual.

> We used quantum/classical duality to establish 3d mirror symmetry for A-type quiver varieties and used it to prove 3d mirror symmetry for ADHM spaces, in particular Hilbert scheme of points:
D. Koroteev, A.M.Z. 30 Mirpor symmetry for instanton moduli spaces,
Commun. Math. Phys. 403 (2023) 1005-1068
D. Koroteev, A.M.Z. 30 Mirror symmetry for instanton moduli spaces,
Commun. Math. Phys. 403 (2023) 1005-1068

Introduction

Quantum Integrable models
$Q Q$-systems and (G, q)-opers

Quantum/classical duality

Application: 3D mirror symmetry

This is a duality between two types of symplectic resolutions: N, N^{\prime}.
On enumerative level:

$$
K_{T}^{(q)}(N) \cong K_{T^{\prime}}^{(q)}\left(N^{\prime}\right)
$$

T-parameters \leftrightarrow Kähler parameters (parameters of deformation).

For Nakajima quiver varieties in type A :

$$
K_{T}^{(q)}(N)=\text { Bethe algebra. }
$$

Notable example: $T^{*} F I_{r+1}$-self-dual.

We used quantum/classical duality to establish 3d mirror symmetry for A-type quiver varieties and used it to prove 3d mirror symmetry for ADHM spaces, in particular Hilbert scheme of points:
P. Koroteev, A.M.Z., 3D Mirror symmetry for instanton moduli spaces, Commun. Math. Phys. 403 (2023) 1005-1068

Anton M. Zeitlin

Introduction

Quantum Integrable models
$Q Q$-systems and
(G, q)-opers
Quantum/classical duality

Thank you!

[^0]: P. Koroteev, P. Pushkar, A. Smirnov, A.Z. '17
 P. Koroteev, D. Sage, A.Z. '20

