Quantum Integrable Systems via Quantum K-theory

Anton M. Zeitlin

Louisiana State University, Department of Mathematics

University of Pennsylvania

Philadelphia

March, 2019
We will talk about the relationship between two seemingly independent areas of mathematics:

- **Quantum Integrable Systems**

 Exactly solvable models of statistical physics: spin chains, vertex models

 1930s: Hans Bethe: **Bethe ansatz** solution of Heisenberg model

 1960-70s: R.J. Baxter, C.N. Young: **Yang-Baxter equation**, **Baxter operator**

 1980s: Development of "QISM" by Leningrad school leading to the discovery of quantum groups by Drinfeld and Jimbo

 Since 1990s: textbook subject and an established area of mathematics and physics.

- **Enumerative geometry: quantum K-theory**

 Generalization of quantum cohomology in the early 2000s by A. Givental, Y.P. Lee and collaborators. Recently big progress in this direction by A. Okounkov and his school.
Introduction

We will talk about the relationship between two seemingly independent areas of mathematics:

▶ Quantum Integrable Systems

Exactly solvable models of statistical physics: spin chains, vertex models

1930s: Hans Bethe: **Bethe ansatz** solution of Heisenberg model

1980s: Development of ”QISM” by Leningrad school leading to the discovery of quantum groups by Drinfeld and Jimbo

Since 1990s: textbook subject and an established area of mathematics and physics.

▶ Enumerative geometry: quantum K-theory

Generalization of quantum cohomology in the early 2000s by A. Givental, Y.P. Lee and collaborators. Recently big progress in this direction by A. Okounkov and his school.
Introduction

We will talk about the relationship between two seemingly independent areas of mathematics:

- **Quantum Integrable Systems**

 Exactly solvable models of statistical physics: spin chains, vertex models

 1930s: Hans Bethe: **Bethe ansatz** solution of Heisenberg model

 1980s: Development of ”QISM” by Leningrad school leading to the discovery of **quantum groups** by Drinfeld and Jimbo

 Since 1990s: textbook subject and an established area of mathematics and physics.

- **Enumerative geometry: quantum K-theory**

 Generalization of **quantum cohomology** in the early 2000s by A. Givental, Y.P. Lee and collaborators. Recently big progress in this direction by A. Okounkov and his school.
Path to this relationship:

▶ First hints: work of Nekrasov and Shatashvili on 3-dimensional gauge theories, now known as Gauge-Bethe correspondence:

▶ Subsequent work in geometric representation theory:

Path to this relationship:

- First hints: work of Nekrasov and Shatashvili on 3-dimensional gauge theories, now known as **Gauge-Bethe correspondence**:

- Subsequent work in geometric representation theory:

Path to this relationship:

- First hints: work of Nekrasov and Shatashvili on 3-dimensional gauge theories, now known as **Gauge-Bethe correspondence**:

- Subsequent work in **geometric representation theory**:

In fact, this is a part of an ambitious program:

Understanding (enumerative) geometry of symplectic resolutions:

"Lie algebras of XXI century" (A. Okounkov' 2012)

Important examples: Springer resolution, Hilbert scheme of points in the plane, Hypertoric varieties,...

A large class of symplectic resolutions is provided by Nakajima quiver varieties (simplest subclass: $T^* Gr(k,n)$)

In this talk our main example will be $T^* Gr(k,n)$ and more generally, cotangent bundles to (partial) flag varieties.
In fact, this is a part of an ambitious program:

Understanding (enumerative) geometry of **symplectic resolutions:**

"Lie algebras of XXI century" (A. Okounkov’ 2012)

Important examples: Springer resolution, Hilbert scheme of points in the plane, Hypertoric varieties, ...

A large class of symplectic resolutions is provided by Nakajima quiver varieties (simplest subclass: $T^*Gr(k,n)$)

In this talk our main example will be $T^*Gr(k,n)$ and more generally, cotangent bundles to (partial) flag varieties.
In fact, this is a part of an ambitious program:

Understanding (enumerative) geometry of symplectic resolutions:

"Lie algebras of XXI century" (A. Okounkov’ 2012)

Important examples: Springer resolution, Hilbert scheme of points in the plane, Hypertoric varieties,...

A large class of symplectic resolutions is provided by Nakajima quiver varieties (simplest subclass: $T^* Gr(k,n)$)

In this talk our main example will be $T^* Gr(k,n)$ and more generally, cotangent bundles to (partial) flag varieties.
In fact, this is a part of an ambitious program:

Understanding (enumerative) geometry of symplectic resolutions:

"Lie algebras of XXI century" (A. Okounkov' 2012)

Important examples: Springer resolution, Hilbert scheme of points in the plane, Hypertoric varieties,...

A large class of symplectic resolutions is provided by Nakajima quiver varieties (simplest subclass: $T^* Gr(k, n)$)

In this talk our main example will be $T^* Gr(k, n)$ and more generally, cotangent bundles to (partial) flag varieties.
In fact, this is a part of an ambitious program:

Understanding (enumerative) geometry of **symplectic resolutions**:

"Lie algebras of XXI century" (A. Okounkov’ 2012)

Important examples: Springer resolution, Hilbert scheme of points in the plane, Hypertoric varieties,...

A large class of symplectic resolutions is provided by Nakajima quiver varieties (simplest subclass: $T^* Gr(k, n)$)

In this talk our main example will be $T^* Gr(k, n)$ and more generally, cotangent bundles to (partial) flag varieties.
Based on:

- Peter Koroteev, Anton M. Zeitlin, *Difference Equations for K-theoretic Vertex Functions of Type-A Nakajima Varieties* arXiv:1802.04463

and to some extent on

- Peter Koroteev, Daniel S. Sage, Anton M. Zeitlin, *(SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality* arXiv:1811.09937
Outline

Quantum groups and quantum integrability

Nekrasov-Shatashvili ideas

Quantum K-theory and integrability

Back to Givental’s ideas + further directions
Let us consider Lie algebra \mathfrak{g}.

The associated \textit{loop algebra} is $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}]$ and t is known as \textit{spectral parameter}.

The following representations, known as \textit{evaluation modules} form a tensor category of $\hat{\mathfrak{g}}$:

$$V_1(a_1) \otimes V_2(a_2) \otimes \cdots \otimes V_n(a_n),$$

where

- V_i are representations of \mathfrak{g}
- a_i are values for t
Loop algebras and evaluation modules

Let us consider Lie algebra \mathfrak{g}.

The associated loop algebra is $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}]$ and t is known as spectral parameter.

The following representations, known as evaluation modules form a tensor category of $\hat{\mathfrak{g}}$:

$$V_1(a_1) \otimes V_2(a_2) \otimes \cdots \otimes V_n(a_n),$$

where

- V_i are representations of \mathfrak{g}
- a_i are values for t
Loop algebras and evaluation modules

Let us consider Lie algebra \mathfrak{g}.

The associated \textit{loop algebra} is $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}]$ and t is known as \textit{spectral parameter}.

The following representations, known as \textit{evaluation modules} form a tensor category of $\hat{\mathfrak{g}}$:

$$V_1(a_1) \otimes V_2(a_2) \otimes \cdots \otimes V_n(a_n),$$

where

- V_i are representations of \mathfrak{g}
- a_i are values for t
Quantum groups

Quantum group

\[U_{\hbar}(\hat{g}) \]

is a deformation of \(U(\hat{g}) \), with a nontrivial intertwiner \(R_{V_1, V_2}(a_1/a_2) \):

\[V_1(a_1) \otimes V_2(a_2) \]

\[\quad \leftrightarrow \quad \]

\[V_2(a_2) \otimes V_1(a_1) \]

which is a rational function of \(a_1, a_2 \), satisfying Yang-Baxter equation:

The generators of \(U_{\hbar}(\hat{g}) \) emerge as matrix elements of \(R \)-matrices (the so-called FRT construction).
Integrability and Baxter algebra

Source of integrability: commuting \textit{transfer matrices}, generating \textit{Baxter algebra} which are weighted traces of

\[
\tilde{R}_{W(u), H_{\text{phys}}} : W(u) \otimes H_{\text{phys}} \to W(u) \otimes H_{\text{phys}}
\]
Baxter algebra and Integrability

Source of integrability: commuting transfer matrices, generating Baxter algebra which are weighted traces of

$$\tilde{R}_{W(u),\mathcal{H}_{phys}} : W(u) \otimes \mathcal{H}_{phys} \rightarrow W(u) \otimes \mathcal{H}_{phys}$$

over auxiliary $W(u)$ space:

$$T_{W(u)} = \text{Tr}_{W(u)} \left((Z \otimes 1) \tilde{R}_{W(u),\mathcal{H}_{phys}} \right)$$

Here $Z \in e^{\mathfrak{h}}$, where $\mathfrak{h} \in \mathfrak{g}$ are diagonal matrices.
Integrability:

\[[T_{W'}(u'), T_W(u)] = 0 \]

There are special transfer matrices is called \textit{Baxter Q-operators}. Such operators generate all Baxter algebra.

Primary goal for physicists is to \textit{diagonalize} \{\(T_W(u)\)\} simultaneously.
Integrability:

\[[T_{W'}(u'), T_W(u)] = 0 \]

There are special transfer matrices called \textit{Baxter Q-operators}. Such operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize \{T_W(u)\} simultaneously.
Integrability:

\[
[T_W(u'), T_W(u)] = 0
\]

There are special transfer matrices is called *Baxter Q-operators*. Such operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize \(\{ T_W(u) \} \) simultaneously.
Textbook example (and main example in this talk) is XXZ Heisenberg spin chain:

$$H_{XXZ} = \mathbb{C}^2(a_1) \otimes \mathbb{C}^2(a_2) \otimes \cdots \otimes \mathbb{C}^2(a_n)$$

States:

$$↑↑↑↑↓↑↑↑↓↑↑↑↑↓↑↑↑↑$$

Here \mathbb{C}^2 stands for 2-dimensional representation of $U_h(\hat{sl}_2)$.

Algebraic method to diagonalize transfer matrices:

Algebraic Bethe ansatz

as a part of Quantum Inverse Scattering Method developed in the 1980s.
$g = \mathfrak{sl}(2)$: XXZ spin chain

Textbook example (and main example in this talk) is XXZ Heisenberg spin chain:

$$\mathcal{H}_{XXZ} = \mathbb{C}^2(a_1) \otimes \mathbb{C}^2(a_2) \otimes \cdots \otimes \mathbb{C}^2(a_n)$$

States:

↑↑↑↑↓↑↑↑↓↑↑↑↑↓↑↑↑↑↑↓↓↑↑↑

Here \mathbb{C}^2 stands for 2-dimensional representation of $U_h(\hat{\mathfrak{sl}}_2)$.

Algebraic method to diagonalize transfer matrices:

Algebraic Bethe ansatz

as a part of Quantum Inverse Scattering Method developed in the 1980s.
\(g = sl(2) : \) XXZ spin chain

Textbook example (and main example in this talk) is XXZ Heisenberg spin chain:

\[
\mathcal{H}_{XXZ} = \mathbb{C}^2(a_1) \otimes \mathbb{C}^2(a_2) \otimes \cdots \otimes \mathbb{C}^2(a_n)
\]

States:

\[
\uparrow\uparrow\uparrow\uparrow \downarrow \uparrow\uparrow\uparrow \downarrow \uparrow\uparrow\uparrow \downarrow \uparrow\uparrow
\]

Here \(\mathbb{C}^2 \) stands for 2-dimensional representation of \(U_{\hbar}(\hat{sl}_2) \).

Algebraic method to diagonalize transfer matrices:

Algebraic Bethe ansatz

as a part of Quantum Inverse Scattering Method developed in the 1980s.
The eigenvalues are generated by symmetric functions of Bethe roots \(\{x_i\} \):

\[
\prod_{j=1}^{n} \frac{x_i - a_j}{\hbar a_j - x_i} = z \hbar^{-n/2} \prod_{j=1}^{k} \frac{x_i \hbar - x_j}{x_i - x_j \hbar}, \quad i = 1 \cdots k,
\]

so that the eigenvalues \(\Lambda(u) \) of the \(Q \)-operator are the generating functions for the elementary symmetric functions of Bethe roots:

\[
\Lambda(u) = \prod_{i=1}^{k} (1 + u \cdot x_i)
\]

A real challenge is to describe representation-theoretic meaning of \(Q \)-operator for general \(g \) (possibly infinite-dimensional).
Bethe equations and Q-operator

The eigenvalues are generated by symmetric functions of Bethe roots \(\{x_i\} \):

\[
\prod_{j=1}^{n} \frac{x_i - a_j}{\hbar a_j - x_i} = z \hbar^{-n/2} \prod_{j=1}^{k} \frac{x_i \hbar - x_j}{x_i - x_j \hbar}, \quad i = 1 \ldots k,
\]

so that the eigenvalues \(\Lambda(u) \) of the Q-operator are the generating functions for the elementary symmetric functions of Bethe roots:

\[
\Lambda(u) = \prod_{i=1}^{k} (1 + u \cdot x_i)
\]

A real challenge is to describe representation-theoretic meaning of Q-operator for general \(g \) (possibly infinite-dimensional).
Bethe equations and Q-operator

The eigenvalues are generated by symmetric functions of Bethe roots $\{x_i\}$:

$$\prod_{j=1}^{n} \frac{x_i - a_j}{\hbar a_j - x_i} = z \hbar^{-n/2} \prod_{j=1, j \neq i}^{k} \frac{x_i \hbar - x_j}{x_i - x_j \hbar}, \quad i = 1 \cdots k,$$

so that the eigenvalues $\Lambda(u)$ of the Q-operator are the generating functions for the elementary symmetric functions of Bethe roots:

$$\Lambda(u) = \prod_{i=1}^{k} (1 + u \cdot x_i)$$

A real challenge is to describe representation-theoretic meaning of Q-operator for general g (possibly infinite-dimensional).
Modern way of looking at Bethe ansatz: solving \textbf{q-difference equations} for

\[\Psi(z_1, \ldots, z_k; a_1, \ldots, a_n) \in V_1(a_1) \otimes \cdots \otimes V_n(a_n)[[z_1, \ldots, z_k]] \]

known as

\textbf{Quantum Knizhnik-Zamolodchikov} (aka Frenkel-Reshetikhin) equations:

\[\Psi(qa_1, \ldots, a_n, \{z_i\}) = (Z \otimes 1 \otimes \cdots \otimes 1)R_{V_1,V_n} \cdots R_{V_1,V_2} \Psi \]

+ commuting difference equations in \(z \) – variables

Here \(\{z_i\} \) are the components of twist variable \(Z \).

The latter series of equations are known as \textbf{dynamical equations}, studied by Etingof, Felder, Tarasov, Varchenko, …

In \(q \to 1 \) limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.
q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations for

\[\Psi(z_1, \ldots, z_k; a_1, \ldots, a_n) \in V_1(a_1) \otimes \cdots \otimes V_n(a_n)[[z_1, \ldots, z_k]] \]

known as

Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

\[\Psi(qa_1, \ldots, a_n, \{z_i\}) = (Z \otimes 1 \otimes \cdots \otimes 1)R_{V_1,V_n} \ldots R_{V_1,V_2} \Psi + \]

commuting difference equations in \(z \) – variables

Here \(\{z_i\} \) are the components of twist variable \(Z \).

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko, ...

In \(q \to 1 \) limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.
Modern way of looking at Bethe ansatz: solving q-difference equations for

$$\psi(z_1, \ldots, z_k; a_1, \ldots, a_n) \in V_1(a_1) \otimes \cdots \otimes V_n(a_n)[[z_1, \ldots, z_k]]$$

known as

Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

$$\psi(qa_1, \ldots, a_n, \{z_i\}) = (Z \otimes 1 \otimes \cdots \otimes 1) R_{V_1, V_n} \ldots R_{V_1, V_2} \psi$$

+ commuting difference equations in z – variables

Here $\{z_i\}$ are the components of twist variable Z.

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko, . . .

In $q \to 1$ limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.
q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations for

$$\Psi(z_1, \ldots, z_k; a_1, \ldots, a_n) \in V_1(a_1) \otimes \cdots \otimes V_n(a_n)[[z_1, \ldots, z_k]]$$

known as

Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

$$\Psi(qa_1, \ldots, a_n, \{z_i\}) = (Z \otimes 1 \otimes \cdots \otimes 1) R_{V_1,V_n} \cdots R_{V_1,V_2} \Psi$$

+ commuting difference equations in z – variables

Here $\{z_i\}$ are the components of twist variable Z.

The latter series of equations are known as dynamical equations, studied by Etingof, Felder, Tarasov, Varchenko, ...

In $q \to 1$ limit we arrive to an eigenvalue problem. Studying the asymptotics of the corresponding solutions we arrive to Bethe equations and eigenvectors.
Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathbb{C} \times S^1$:

\[G = U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g}), \]

with gauge group

and some ”matter fields” (sections of associated vector G-bundles), to be specified below.

The collection $\{v_i\}$ determines the weights of the corresponding subspace in \mathcal{H}.

In the simplest case of $g = \mathfrak{sl}(2)$ we just have one $U(v)$ and

\[\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow, \] and $\# \downarrow = v$
Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathbb{C} \times S^1$:

\[G = U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g}), \]

and some "matter fields" (sections of associated vector G-bundles), to be specified below.

The collection \(\{v_i\} \) determines the weights of the corresponding subspace in H.

In the simplest case of $g = \mathfrak{sl}(2)$ we just have one $U(v)$ and

\[\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow , \text{ and } \# \downarrow = v \]
Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathbb{C} \times S^1$:

\[G = U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank}_g}), \]

with gauge group and some ”matter fields” (sections of associated vector G-bundles), to be specified below.

The collection $\{v_i\}$ determines the weights of the corresponding subspace in \mathcal{H}.

In the simplest case of $g = \mathfrak{sl}(2)$ we just have one $U(v)$ and

\[\uparrow\uparrow\uparrow\uparrow\downarrow \uparrow\uparrow\uparrow\downarrow \uparrow\uparrow\uparrow\uparrow\downarrow \downarrow \uparrow\uparrow\uparrow, \text{ and } \#\downarrow = v \]
In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on $\mathbb{C} \times S^1$:

\[G = U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g}), \]

with gauge group

and some "matter fields" (sections of associated vector G-bundles), to be specified below.

The collection \(\{v_i\} \) determines the weights of the corresponding subspace in \(\mathcal{H} \).

In the simplest case of \(g = sl(2) \) we just have one \(U(\nu) \) and

\[\uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow, \text{ and } \# \downarrow = \nu \]
Full Gauge/Bethe correspondence dictionary

Gauge group G: $U(v_1) \times U(v_2) \times \ldots \times U(v_{\text{rank}g})$

The set $\{v_i\}$ determines the weight (e.g. number of inverted spins)

Maximal torus: $\{x_{i_1}, \ldots, x_{i_{v_i}}\}$ — these are Bethe roots variables.

Matter Fields: affine space \mathcal{M}

- Standard matter fields: $\bigoplus_{i=1}^{\text{rank}g} V_i^* \otimes W_i$, s.t. $\text{dim}(V_i) = v_i$;

 W_i is a framing ("flavor") space, where $\mathbb{C}_{a_1}^\times \times \mathbb{C}_{a_2}^\times \times \ldots$ act.
Full Gauge/Bethe correspondence dictionary

Gauge group G: $U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g})$

The set $\{v_i\}$ determines the weight (e.g. number of inverted spins)

Maximal torus: $\{x_{i_1}, \ldots, x_{i_{v_i}}\}$ — these are Bethe roots variables.

Matter Fields: affine space \mathcal{M}

- Standard matter fields: $\bigoplus_{i=1}^{\text{rank } g} V_i^* \otimes W_i$, s.t. $\text{dim}(V_i) = v_i$;

 W_i is a *framing* ("flavor") space, where $\mathbb{C}_{a_1}^\times \times \mathbb{C}_{a_2}^\times \times \ldots$ act.
Gauge group \(G \): \(U(v_1) \times U(v_2) \times \ldots \times U(v_{\text{rank } g}) \)

The set \(\{v_i\} \) determines the weight (e.g. number of inverted spins)

Maximal torus: \(\{x_{i_1}, \ldots, x_{i_{v_i}}\} \) — these are Bethe roots variables.

Matter Fields: affine space \(\mathcal{M} \)

- Standard matter fields: \(\bigoplus_{i=1}^{\text{rank } g} V_i^* \otimes W_i \), s.t. \(\dim(V_i) = v_i \);

 \(W_i \) is a framing ("flavor") space, where \(\mathbb{C}_{a_1}^x \times \mathbb{C}_{a_2}^x \times \ldots \) act.
Full Gauge/Bethe correspondence dictionary

Gauge group G: $U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g})$

The set $\{v_i\}$ determines the weight (e.g. number of inverted spins)

Maximal torus: $\{x_{i_1}, \ldots, x_{i_{v_i}}\}$ — these are **Bethe roots** variables.

Matter Fields: affine space \mathcal{M}

- Standard matter fields: $\bigoplus_{i=1}^{\text{rank } g} V_i^* \otimes W_i$, s.t. $\dim(V_i) = v_i$;

 W_i is a **framing ("flavor")** space, where $\mathbb{C}_{a_1}^\times \times \mathbb{C}_{a_2}^\times \times \ldots$ act.
Full Gauge/Bethe correspondence dictionary

Gauge group \(G \): \(U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g}) \)

The set \(\{v_i\} \) determines the weight (e.g. number of inverted spins)

Maximal torus: \(\{x_{i_1}, \ldots, x_{i_{v_i}}\} \) — these are Bethe roots variables.

Matter Fields: affine space \(\mathcal{M} \)

- Standard matter fields: \(\bigoplus_{i=1}^{\text{rank } g} V_i^* \otimes W_i \), s.t. \(\dim(V_i) = v_i \);

\(W_i \) is a framing ("flavor") space, where \(\mathbb{C}_{a_1}^\times \times \mathbb{C}_{a_2}^\times \times \ldots \) act.
Full Gauge/Bethe correspondence dictionary

Gauge group G: $U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g})$

The set $\{v_i\}$ determines the weight (i.e. number of inverted spins)

Maximal torus: $\{x_{i_1}, \ldots, x_{i_{v_i}}\}$ — these are **Bethe roots** variables.

Matter Fields: affine space \mathcal{M}

- Standard matter fields: $\bigoplus_{i=1}^{\text{rank } g} V_i^* \otimes W_i$, s.t. $\dim(V_i) = v_i$;

 W_i is a **framing** ("**flavor**") space, where $\mathbb{C}^{a_1} \times \mathbb{C}^{a_2} \times \ldots$ act.

- "**Bifundamental"** quiver data:

 $\bigoplus_{i \rightarrow j} V_i^* \otimes V_j$

 The quiver serves as a "kind of" Dynkin diagram for g.

To have enough supersymmetries \bigoplus duals: $T^* \mathcal{M}$.
Full Gauge/Bethe correspondence dictionary

Gauge group G: $U(v_1) \times U(v_2) \times \ldots U(v_{\text{rank } g})$

The set $\{v_i\}$ determines the weight (i.e. number of inverted spins)

Maximal torus: $\{x_{i_1}, \ldots, x_{i_{v_i}}\}$ — these are Bethe roots variables.

Matter Fields: affine space \mathcal{M}

- Standard matter fields: $\bigoplus_{i=1}^{\text{rank } g} V_i^* \otimes W_i$, s.t. $\text{dim}(V_i) = v_i$;

 W_i is a framing ("flavor") space, where $\mathbb{C}^{a_1} \times \mathbb{C}^{a_2} \times \ldots$ act.

- “Bifundamental” quiver data:

 $$\bigoplus_{i \to j} V_i^* \otimes V_j$$

 The quiver serves as a “kind of” Dynkin diagram for g.

To have enough supersymmetries \bigoplus duals: $T^* \mathcal{M}$.
Moduli of Higgs vacua \leftrightarrow Nakajima quiver variety:

$$T^* \mathcal{M}/\!/G = \mu^{-1}(0)/\!/G = N$$

where $\mu = 0$ is a momentum map (low energy configuration) condition.

In the case of quiver with one vertex and one framing:

$$N = T^* \text{Gr}(v, w)$$
Moduli of Higgs vacua \longleftrightarrow Nakajima quiver variety:

$$
T^* \mathcal{M} \sslash G = \mu^{-1}(0) \sslash G = N
$$

where $\mu = 0$ is a momentum map (low energy configuration) condition.

In the case of quiver with one vertex and one framing:

$$
N = T^* \text{Gr}(v, w)
$$
Moduli of Higgs vacua \leftrightarrow Nakajima quiver variety:

$$T^*\mathcal{M} \sslash G = \mu^{-1}(0) \sslash G = N$$

where $\mu = 0$ is low energy configuration condition.

In the case of quiver with one vertex and one framing:

$$N = T^* \text{Gr}(v, w).$$

Hilbert space of vacua $\mathcal{H} \leftrightarrow$ Wilson line operators \leftrightarrow

equivariant K-theory of Nakajima variety.

Known to be a module for the action of a quantum group $U_{\hbar}(\hat{g})$ due to Nakajima.
Moduli of Higgs vacua \longleftrightarrow Nakajima quiver variety:

$$T^*M \sslash\!/ G = \mu^{-1}(0) \sslash\!/ G = N$$

where $\mu = 0$ is low energy configuration condition.

In the case of quiver with one vertex and one framing:

$$N = T^*Gr(v, w).$$

Hilbert space of vacua $\mathcal{H} \longleftrightarrow$ Wilson line operators \longleftrightarrow

equivariant K-theory of Nakajima variety.

Known to be a module for the action of a quantum group $U_{\hbar}(\hat{g})$ due to Nakajima.
Physicists interested in computing SUSY indices:

\[
\text{str}(e^{-\beta \phi^2} A) = \text{tr}_{\text{Ker} \phi_{\text{even}}} (A) - \text{tr}_{\text{Ker} \phi_{\text{odd}}} (A) = \text{str}_{\text{index}} \phi(A)
\]

Mathematically those correspond to (very similar to GW curve counting!) weighted K-theoretic counts of quasimaps:

\[
\mathcal{C} \xrightarrow{\text{quasimap } f} \text{Nakajima variety } N
\]

The weight (Kähler) parameter is \(Z^{\text{deg}(f)} \), which is exactly twist parameter \(Z \) we encountered before.
Physicists interested in computing SUSY indices:

\[
\text{str}(e^{-\beta \Phi^2} A) = \text{tr}_{\text{Ker} \Phi_{\text{even}}} (A) - \text{tr}_{\text{Ker} \Phi_{\text{odd}}} (A) = \text{str}_{\text{index}} \Phi (A)
\]

Mathematically those correspond to (very similar to GW curve counting!) weighted K-theoretic counts of quasimaps:

\[
\mathbb{C} \xrightarrow{\text{quasimap } f} \text{Nakajima variety } \mathcal{N}
\]

The weight (Kähler) parameter is \(Z^{\deg(f)} \), which is exactly twist parameter \(Z \) we encountered before.
Physicists interested in computing SUSY indices:

\[\text{str}(e^{-\beta \Phi^2} A) = \text{tr}_{\text{Ker}\Phi_{\text{even}}}(A) - \text{tr}_{\text{Ker}\Phi_{\text{odd}}}(A) = \text{str}_{\text{index}}\Phi(A) \]

Mathematically those correspond to (very similar to GW curve counting!) weighted K-theoretic counts of quasimaps:

\[\mathbb{C} \xrightarrow{\text{quasimap} f} \text{Nakajima variety} \ N \]

The weight (Kähler) parameter is \(Z^{\deg(f)} \), which is exactly twist parameter \(Z \) we encountered before.
Physicists interested in computing SUSY indices:

\[\text{str}(e^{-\beta \phi^2} A) = \text{tr}_{\text{Ker} \phi_{\text{even}}} (A) - \text{tr}_{\text{Ker} \phi_{\text{odd}}} (A) = \text{str}_{\text{index}} \phi (A) \]

Mathematically those correspond to (very similar to GW curve counting!) weighted K-theoretic counts of quasimaps:

\[\mathbb{C} \xrightarrow{\text{quasimap } f} \text{Nakajima variety } \mathcal{N} \]

The weight (Kähler) parameter is \(Z^{\text{deg}(f)} \), which is exactly twist parameter \(Z \) we encountered before.
Physicists interested in computing **SUSY indices**:

\[\text{str}(e^{-\beta \Phi^2} A) = \text{tr}_{\text{Ker} \Phi_{\text{even}}}(A) - \text{tr}_{\text{Ker} \Phi_{\text{odd}}}(A) = \text{str}_{\text{index}} \Phi(A) \]

Mathematically those correspond to (very similar to GW curve counting!) weighted K-theoretic counts of **quasimaps**:

\[\mathcal{C} \xrightarrow{\text{quasimap } f} \text{Nakajima variety } N \]

The weight (Kähler) parameter is \(Z^{\text{deg}(f)} \), which is exactly twist parameter \(Z \) we encountered before.

One can think of **quantum K-theory ring**:
Nekrasov and Shatashvili:

Quantum K – theory ring of Nakajima variety =

symmetric polynomials in $x_{ij} /$ Bethe equations
Key Ideas

Nekrasov and Shatashvili:

Quantum K – theory ring of Nakajima variety $=$

symmetric polynomials in x_{ij} / Bethe equations

Input by Okounkov:

q – difference equations $= qKZ$ equations $+$ dynamical equations
In the following we will talk about this in the simplest case:

- Nakajima variety: \(N = T^* Gr(k, n) \)
- Quantum Integrable System: \(\mathfrak{sl}(2) \) XXZ spin chain.
\[T^* \text{Gr}(k, n) = N_{k,n}, \quad \sqcup_k N_{k,n} = N(n). \]

As a Nakajima variety:

\[N_{k,n} = T^* M \sslash \!/ GL(V) = \mu^{-1}(0)_s / GL(V), \]

where

\[T^* M = \text{Hom}(V, W) \oplus \text{Hom}(W, V) \]

Tautological bundles:

\[\mathcal{V} = T^* M \times V \sslash \!/ GL(V), \quad \mathcal{W} = T^* M \times W \sslash \!/ GL(V) \]

For any \(\tau \in K_{GL(V)}(\cdot) = \Lambda(x_1^{\pm1}, x_2^{\pm1}, \ldots x_k^{\pm1}) \) we introduce a tautological bundle:

\[\tau = T^* M \times \tau(V) \sslash \!/ GL(V) \]
Notation

\[T^* \text{Gr}(k, n) = N_{k, n}, \quad \sqcup_k N_{k, n} = N(n). \]

As a Nakajima variety:

\[N_{k, n} = T^* \mathcal{M} \sslash \!/ GL(V) = \mu_{\cdot}^{-1}(0)_{s} / GL(V), \]

where

\[T^* \mathcal{M} = Hom(V, W) \oplus Hom(W, V) \]

Tautological bundles:

\[\mathcal{V} = T^* \mathcal{M} \times V \sslash \!/ GL(V), \quad \mathcal{W} = T^* \mathcal{M} \times W \sslash \!/ GL(V) \]

For any \(\tau \in K_{GL(V)}(\cdot) = \Lambda(x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_k^{\pm 1}) \) we introduce a tautological bundle:

\[\tau = T^* \mathcal{M} \times \tau(V) \sslash \!/ GL(V) \]
Notation

\[T^* \text{Gr}(k, n) = N_{k,n}, \quad \bigcup_k N_{k,n} = N(n). \]

As a Nakajima variety:

\[N_{k,n} = T^*M \sslash GL(V) = \mu^{-1}(0)/GL(V), \]

where

\[T^*M = \text{Hom}(V, W) \oplus \text{Hom}(W, V) \]

Tautological bundles:

\[\mathcal{V} = T^*M \times V \sslash GL(V), \quad \mathcal{W} = T^*M \times W \sslash GL(V) \]

For any \(\tau \in K_{GL(V)}(\cdot) = \Lambda(x_1^{\pm 1}, x_2^{\pm 1}, \ldots x_k^{\pm 1}) \) we introduce a tautological bundle:

\[\tau = T^*M \times \tau(V) \sslash GL(V) \]
Notation

\[T^* \text{Gr}(k, n) = N_{k,n}, \quad \sqcup_k N_{k,n} = N(n). \]

As a Nakajima variety:

\[N_{k,n} = T^* M \sslash \!/ \!/ GL(V) = \mu^{-1}(0)_{s}/GL(V), \]

where

\[T^* M = \text{Hom}(V, W) \oplus \text{Hom}(W, V) \]

Tautological bundles:

\[V = T^* M \times V \sslash \!/ \!/ GL(V), \quad W = T^* M \times W \sslash \!/ \!/ GL(V) \]

For any \(\tau \in K_{GL(V)}(\cdot) = \Lambda(x_1^{\pm 1}, x_2^{\pm 1}, \ldots x_k^{\pm 1}) \) we introduce a tautological bundle:

\[\tau = T^* M \times \tau(V) \sslash \!/ \!/ GL(V) \]
Tori, Fixed points and Bethe roots

Torus action:

\[A = \mathbb{C}^\times_{a_1} \times \cdots \times \mathbb{C}^\times_{a_n} \ominus W, \]

Full torus: \(T = A \times \mathbb{C}^\times_\hbar \), where \(\mathbb{C}^\times_\hbar \) scales cotangent directions

Fixed points: \(p = \{s_1, \ldots, s_k\} \in \{a_1, \ldots, a_n\} \)

Denote \(\mathcal{A} := \mathbb{Q}(a_1, \ldots, a_n, \hbar) \), \(R := \mathbb{Z}(a_1, \ldots, a_n, \hbar) \), then localized K-theory is:

\[
K_T(N(n))_{loc} = K_T(N(n)) \otimes_R \mathcal{A} = \sum_{k=0}^{n} K_T(N_{k,n}) \otimes_R \mathcal{A}
\]

is a \(2^n \)-dimensional \(\mathcal{A} \)-vector space (Hilbert space for spin chain), spanned by \(O_p \).

Classical Bethe equations: The eigenvalues of the operators of multiplication by \(\tau \) are \(\tau(x_1, \cdots, x_k) \) evaluated at the solutions of the following equations:

\[
\prod_{j=1}^{n} (x_i - a_j) = 0, \quad i = 1, \ldots, k, \text{ with } x_i \neq x_j
\]
Tori, Fixed points and Bethe roots

Torus action:

\[A = \mathbb{C}^\times_{a_1} \times \cdots \times \mathbb{C}^\times_{a_n} \circ W, \]

Full torus: \(T = A \times \mathbb{C}^\times \), where \(\mathbb{C}^\times \) scales cotangent directions

Fixed points: \(p = \{s_1, \ldots, s_k\} \in \{a_1, \ldots, a_n\} \)

Denote \(A := \mathbb{Q}(a_1, \ldots, a_n, \hbar) \), \(R := \mathbb{Z}(a_1, \ldots, a_n, \hbar) \), then localized K-theory is:

\[
K_T(N(n))_{loc} = K_T(N(n)) \otimes_R A = \sum_{k=0}^{n} K_T(N_{k,n}) \otimes_R A
\]

is a \(2^n \)-dimensional \(A \)-vector space (Hilbert space for spin chain), spanned by \(\mathcal{O}_p \).

Classical Bethe equations: The eigenvalues of the operators of multiplication by \(\tau \) are \(\tau(x_1, \cdots, x_k) \) evaluated at the solutions of the following equations:

\[
\prod_{j=1}^{n} (x_i - a_j) = 0, \quad i = 1, \ldots, k, \text{ with } x_i \neq x_j
\]
Tori, Fixed points and Bethe roots

Torus action:

\[A = \mathbb{C}_{a_1}^\times \times \cdots \times \mathbb{C}_{a_n}^\times \circ W, \]

Full torus: \[T = A \times \mathbb{C}_\hbar^\times, \] where \(\mathbb{C}_\hbar^\times \) scales cotangent directions

Fixed points: \(p = \{ s_1, \ldots, s_k \} \in \{ a_1, \ldots, a_n \} \)

Denote \(\mathcal{A} := \mathbb{Q}(a_1, \ldots, a_n, \hbar), \) \(R := \mathbb{Z}(a_1, \ldots, a_n, \hbar), \) then localized K-theory is:

\[K_T(N(n))_{loc} = K_T(N(n)) \otimes_R \mathcal{A} = \sum_{k=0}^n K_T(N_{k,n}) \otimes_R \mathcal{A} \]

is a \(2^n \)-dimensional \(\mathcal{A} \)-vector space (Hilbert space for spin chain), spanned by \(\mathcal{O}_p \).

Classical Bethe equations: The eigenvalues of the operators of multiplication by \(\tau \) are \(\tau(x_1, \cdots, x_k) \) evaluated at the solutions of the following equations:

\[\prod_{j=1}^n (x_i - a_j) = 0, \quad i = 1, \ldots, k, \text{ with } x_i \neq x_j \]
Tori, Fixed points and Bethe roots

Torus action:

\[A = \mathbb{C}_{a_1}^\times \times \cdots \times \mathbb{C}_{a_n}^\times \blacklozenge W, \]

Full torus: \(T = A \times \mathbb{C}_\hbar^\times \), where \(\mathbb{C}_\hbar^\times \) scales cotangent directions

Fixed points: \(p = \{s_1, \ldots, s_k\} \subseteq \{a_1, \ldots, a_n\} \)

Denote \(\mathcal{A} := \mathbb{Q}(a_1, \ldots, a_n, \hbar), \ R := \mathbb{Z}(a_1, \ldots, a_n, \hbar), \) then localized K-theory is:

\[
K_T(N(n))_{\text{loc}} = K_T(N(n)) \otimes_R \mathcal{A} = \sum_{k=0}^{n} K_T(N_{k,n}) \otimes_R \mathcal{A}
\]

is a \(2^n \)-dimensional \(\mathcal{A} \)-vector space (Hilbert space for spin chain), spanned by \(\mathcal{O}_p \).

Classical Bethe equations: The eigenvalues of the operators of multiplication by \(\tau \) are \(\tau(x_1, \cdots, x_k) \) evaluated at the solutions of the following equations:

\[
\prod_{j=1}^{n}(x_i - a_j) = 0, \quad i = 1, \ldots, k, \text{ with } x_i \neq x_j
\]
Tori, Fixed points and Bethe roots

Torus action:

\[A = \mathbb{C}^\times_{a_1} \times \cdots \times \mathbb{C}^\times_{a_n} \cup W, \]

Full torus: \(T = A \times \mathbb{C}_{\hbar}^\times, \) where \(\mathbb{C}^\times_{\hbar} \) scales cotangent directions

Fixed points: \(p = \{s_1, \ldots, s_k\} \in \{a_1, \ldots, a_n\} \)

Denote \(\mathcal{A} := \mathbb{Q}(a_1, \ldots, a_n, \hbar), \) \(R := \mathbb{Z}(a_1, \ldots, a_n, \hbar), \) then localized K-theory is:

\[
K_T(N(n))_{loc} = K_T(N(n)) \otimes_R \mathcal{A} = \sum_{k=0}^{n} K_T(N_{k,n}) \otimes_R \mathcal{A}
\]

is a \(2^n \)-dimensional \(\mathcal{A} \)-vector space (Hilbert space for spin chain), spanned by \(\emptyset_p. \)

Classical Bethe equations: The eigenvalues of the operators of multiplication by \(\tau \) are \(\tau(x_1, \cdots, x_k) \) evaluated at the solutions of the following equations:

\[
\prod_{j=1}^{n} (x_i - a_j) = 0, \quad i = 1, \ldots, k, \text{ with } x_i \neq x_j
\]
Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

$$\mathbb{C} \longrightarrow \mathcal{N}_{k,n}$$

in order to deform tensor product: $A \otimes B = A \otimes B + \sum_{d=1}^{\infty} A \otimes_d B z^d$.

We will also define quantum tautological classes:

$$\hat{\tau}(z) = \tau + \sum_{d=1}^{\infty} \tau_d z^d \in K_T(N(n))[z]$$

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators of quantum multiplication by $\hat{\tau}(z)$ are given by the values of the corresponding Laurent polynomials $\tau(x_1, \ldots, x_k)$ evaluated at the solutions of the following equations:

$$\prod_{j=1}^{n} \frac{x_i - a_j}{ha_j - x_i} = z \ h^{-n/2} \ \prod_{j=1}^{k} \frac{x_i h - x_j}{x_i - x_j h}, \quad i = 1 \cdots k,$$
Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

\[\mathbb{C} \longrightarrow \mathcal{N}_{k,n} \]

in order to deform tensor product: \(A \otimes B = A \otimes B + \sum_{d=1}^{\infty} A \otimes_d B \ z^d \).

We will also define quantum tautological classes:

\[\hat{\tau}(z) = \tau + \sum_{d=1}^{\infty} \tau_d z^d \in K_T(\mathcal{N}(n))[\![z]\!] \]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators of quantum multiplication by \(\hat{\tau}(z) \) are given by the values of the corresponding Laurent polynomials \(\tau(x_1, \ldots, x_k) \) evaluated at the solutions of the following equations:

\[
\prod_{j=1}^{n} \frac{x_i - a_j}{ha_j - x_i} = z \ h^{-n/2} \prod_{\substack{j=1 \atop j \neq i}}^{k} \frac{x_i h - x_j}{x_i - x_j h}, \quad i = 1 \cdots k,
\]
Quantum tautological classes and Bethe equations

We will use theory of quasimaps:
\[\mathcal{C} \rightarrow N_{k,n} \]
in order to deform tensor product: \(A \otimes B = A \otimes B + \sum_{d=1}^{\infty} A \otimes_d B \cdot z^d \).

We will also define quantum tautological classes:
\[\hat{\tau}(z) = \tau + \sum_{d=1}^{\infty} \tau_d z^d \in K_T(N(n))[z] \]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators of quantum multiplication by \(\hat{\tau}(z) \) are given by the values of the corresponding Laurent polynomials \(\tau(x_1, \ldots, x_k) \) evaluated at the solutions of the following equations:
\[
\prod_{j=1}^{n} \frac{x_i - a_j}{\hbar a_j - x_i} = z \hbar^{-n/2} \prod_{j=1, j \neq i}^{k} \frac{x_i \hbar - x_j}{x_i - x_j \hbar}, \quad i = 1 \cdots k,
\]
Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

\[\mathbb{C} \rightarrow \mathcal{N}_k, n \]

in order to deform tensor product: \(A \otimes B = A \otimes B + \sum_{d=1}^{\infty} A \otimes_d B \cdot z^d \).

We will also define quantum tautological classes:

\[\hat{\tau}(z) = \tau + \sum_{d=1}^{\infty} \tau_d z^d \in K_T(N(n))[\![z]\!] \]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators of quantum multiplication by \(\hat{\tau}(z) \) are given by the values of the corresponding Laurent polynomials \(\tau(x_1, \ldots, x_k) \) evaluated at the solutions of the following equations:

\[
\prod_{j=1}^{n} \frac{x_i - a_j}{\hbar a_j - x_i} = z \hbar^{-n/2} \prod_{j=1}^{k} \frac{x_i \hbar - x_j}{x_i - x_j \hbar}, \quad i = 1 \ldots k,
\]
The quantum K-theoretic meaning of the Q-operator

Theorem. [P. Pushkar, A. Smirnov, A.Z.]

- The quantum multiplication on quantum tautological class corresponding to $\tau_u := \bigoplus_{m \geq 0} u^m \Lambda^m \mathcal{V}$ coincides with Q-operator, i.e.

 $$\hat{\tau}_u(z) = Q(u)$$

- Explicit universal formulas for quantum products:

 $$\hat{\Lambda}^\ell \mathcal{V}(z) = \Lambda^\ell \mathcal{V} + a_1(z) F_0 \Lambda^{\ell-1} \mathcal{V} E_{-1} + \cdots + a_\ell(z) F_\ell E_{-1},$$

where $a_m(z) = \frac{(h-1)^m}{(m)_h} \frac{m(m+1)}{2} \frac{K^m}{\prod_{i=1}^m (1-(−1)^n z^{-1} h^i K)},$

where K, F_0, E_{-1} are the generators of $U_h(\hat{\mathfrak{sl}}_2).$
The quantum K-theoretic meaning of the Q-operator

Theorem. [P. Pushkar, A. Smirnov, A.Z.]

- The quantum multiplication on quantum tautological class corresponding to \(\tau_u := \oplus_{m \geq 0} u^m \Lambda^m \mathcal{V} \) coincides with Q-operator, i.e
 \[
 \hat{\tau}_u(z) = Q(u)
 \]

- Explicit universal formulas for quantum products:
 \[
 \hat{\Lambda}^\ell \mathcal{V}(z) = \Lambda^\ell \mathcal{V} + a_1(z) F_0 \Lambda^{\ell-1} \mathcal{V} E_{-1} + \cdots + a_{\ell}(z) F_{\ell} E_{\ell-1},
 \]
 where \(a_m(z) = \frac{(h-1)^m \ h \frac{m(m+1)}{2} \ K^m}{(m) \ h! \ \prod_{i=1}^{m} (1-(1)_{n} z^{-1} h^i K)}, \)
 where \(K, F_0, E_{-1} \) are the generators of \(U_h(\hat{sl}_2). \)
The quantum K-theoretic meaning of the Q-operator

Theorem. [P. Pushkar, A. Smirnov, A.Z.]

- The quantum multiplication on quantum tautological class corresponding to \(\tau_u := \bigoplus_{m \geq 0} u^m \Lambda^m \mathcal{V} \) coincides with Q-operator, i.e.

 \[
 \hat{\tau}_u(z) = Q(u)
 \]

- Explicit universal formulas for quantum products:

 \[
 \hat{\Lambda}^\ell \mathcal{V}(z) = \Lambda^\ell \mathcal{V} + a_1(z) F_0 \Lambda^{\ell-1} \mathcal{V} E_{-1} + \cdots + a_\ell(z) F_0^\ell E_{-1}^\ell,
 \]

 where \(a_m(z) = \frac{(\hbar -1)^m}{m!} \frac{m(m+1)}{2} K^m }{(m)_{\hbar}! \prod_{i=1}^m (1-(\hbar z^{i-1} \hbar i K)}
 \]

 where \(K, F_0, E_{-1} \) are the generators of \(\mathcal{U}_{\hbar} (\hat{\mathfrak{sl}}_2) \).
Quasimaps

Quasimap \(f : \mathbb{C} \rightarrow N_{k,n} \) is the following collection of data:

- vector bundle \(\mathcal{V} \) on \(\mathbb{C} \) of rank \(k \).
- section \(f \in H^0(\mathbb{C}, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar) \), satisfying the condition \(\mu = 0 \), where \(\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W}) \), so that \(\mathcal{W} \) is a trivial bundle of rank \(n \).

\[
e_{\nu_p}(f) = f(p) \in [\mu^{-1}(0)/GL(V)] \supset N_{k,n}
\]

Quasimap is **stable** if \(f(p) \in N_{k,n} \) for all but finitely many points, known as **singularities** of quasimap.

For the moduli space of quasimaps

\[
QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/\sim
\]

only \(\mathcal{V} \) and \(f \) vary, while \(\mathbb{C} \) and \(\mathcal{W} \) remain the same.

\[
deg(f) := deg(\mathcal{V}), \quad QM(N_{k,n}) = \sqcup_{d \geq 0} QM^d(N_{k,n}).
\]
Quasimaps

Quasimap $f : \mathbb{C} \rightarrow N_{k,n}$ is the following collection of data:

- vector bundle \mathcal{V} on \mathbb{C} of rank k.
- section $f \in H^0(C, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar)$, satisfying the condition $\mu = 0$, where $\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W})$, so that \mathcal{W} is a trivial bundle of rank n.

$$\text{ev}_p(f) = f(p) \in [\mu^{-1}(0)/GL(V)] \supset N_{k,n}$$

Quasimap is *stable* if $f(p) \in N_{k,n}$ for all but finitely many points, known as *singularities* of quasimap.

For the moduli space of quasimaps

$$QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/\sim$$

only \mathcal{V} and f vary, while C and \mathcal{W} remain the same.

$$\text{deg}(f) := \text{deg}(\mathcal{V}), \quad QM(N_{k,n}) = \bigsqcup_{d \geq 0} QM^d(N_{k,n}).$$
Quasimaps

Quasimap \(f: \mathbb{C} \rightarrow N_{k,n} \) is the following collection of data:

- vector bundle \(\mathcal{V} \) on \(\mathbb{C} \) of rank \(k \).
- section \(f \in H^0(\mathbb{C}, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar) \), satisfying the condition \(\mu = 0 \), where \(\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W}) \), so that \(\mathcal{W} \) is a trivial bundle of rank \(n \).

\[\text{ev}_p(f) = f(p) \in [\mu^{-1}(0)/GL(V)] \supset N_{k,n} \]

Quasimap is **stable** if \(f(p) \in N_{k,n} \) for all but finitely many points, known as **singularities** of quasimap.

For the moduli space of quasimaps

\[QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/ \sim \]

only \(\mathcal{V} \) and \(f \) vary, while \(\mathbb{C} \) and \(\mathcal{W} \) remain the same.

\[\text{deg}(f) := \text{deg}(\mathcal{V}), \quad QM(N_{k,n}) = \bigsqcup_{d \geq 0} QM^d(N_{k,n}). \]
Quasimaps

Quasimap f: $\mathbb{C} \to N_{k,n}$ is the following collection of data:

- vector bundle \mathcal{V} on \mathbb{C} of rank k.
- section $f \in H^0(C, M \oplus M^* \otimes \hbar)$, satisfying the condition $\mu = 0$, where $M = \text{Hom}(\mathcal{V}, \mathcal{W})$, so that \mathcal{W} is a trivial bundle of rank n.

$$\text{ev}_p(f) = f(p) \in [\mu^{-1}(0)/ GL(\mathcal{V})] \supset N_{k,n}$$

Quasimap is *stable* if $f(p) \in N_{k,n}$ for all but finitely many points, known as *singularities* of quasimap.

For the moduli space of quasimaps

$$\text{QM}(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/ \sim$$

only \mathcal{V} and f vary, while \mathbb{C} and \mathcal{W} remain the same.

$$\text{deg}(f) := \text{deg}(\mathcal{V}), \quad \text{QM}(N_{k,n}) = \sqcup_{d \geq 0} \text{QM}^d(N_{k,n}).$$
Quasimaps

Quasimap \(f : \mathbb{C} \rightarrow N_{k,n} \) is the following collection of data:

- vector bundle \(\mathcal{V} \) on \(\mathbb{C} \) of rank \(k \).
- section \(f \in H^0(\mathbb{C}, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar) \), satisfying the condition \(\mu = 0 \), where \(\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W}) \), so that \(\mathcal{W} \) is a trivial bundle of rank \(n \).

\[
ev_p(f) = f(p) \in [\mu^{-1}(0)/GL(V)] \supset N_{k,n}
\]

Quasimap is *stable* if \(f(p) \in N_{k,n} \) for all but finitely many points, known as *singularities* of quasimap.

For the moduli space of quasimaps

\[
QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/\sim
\]

only \(\mathcal{V} \) and \(f \) vary, while \(\mathbb{C} \) and \(\mathcal{W} \) remain the same.

\[
deg(f) := \deg(\mathcal{V}), \quad QM(N_{k,n}) = \sqcup_{d \geq 0} QM^d(N_{k,n}).
\]
Quasimaps

Quasimap \(f : \mathbb{C} \rightarrow N_{k,n} \) is the following collection of data:

- vector bundle \(\mathcal{V} \) on \(\mathbb{C} \) of rank \(k \).
- section \(f \in H^0(C, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar) \), satisfying the condition \(\mu = 0 \), where \(\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W}) \), so that \(\mathcal{W} \) is a trivial bundle of rank \(n \).

\[
e_{\nu}(f) = f(p) \in [\mu^{-1}(0)/\text{GL}(V)] \supset N_{k,n}
\]

Quasimap is **stable** if \(f(p) \in N_{k,n} \) for all but finitely many points, known as **singularities** of quasimap.

For the moduli space of quasimaps

\[
QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/\sim
\]

only \(\mathcal{V} \) and \(f \) vary, while \(C \) and \(\mathcal{W} \) remain the same.

\[
deg(f) := deg(\mathcal{V}), \quad QM(N_{k,n}) = \bigsqcup_{d \geq 0} QM^d(N_{k,n}).
\]
Quasimaps

Quasimap $f: \mathbb{C} \dashrightarrow N_{k,n}$ is the following collection of data:

- vector bundle \mathcal{V} on \mathbb{C} of rank k.
- section $f \in H^0(\mathbb{C}, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar)$, satisfying the condition $\mu = 0$, where $\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W})$, so that \mathcal{W} is a trivial bundle of rank n.

$$\text{ev}_p(f) = f(p) \in [\mu^{-1}(0)/\text{GL}(\mathcal{V})] \supset N_{k,n}$$

Quasimap is **stable** if $f(p) \in N_{k,n}$ for all but finitely many points, known as **singularities** of quasimap.

For the moduli space of quasimaps

$$QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/\sim$$

only \mathcal{V} and f vary, while \mathbb{C} and \mathcal{W} remain the same.

$$\text{deg}(f) := \text{deg}(\mathcal{V}), \quad QM(N_{k,n}) = \sqcup_{d \geq 0} QM^d(N_{k,n})$$
Quasimaps

Quasimap \(f : \mathbb{C} \rightarrow N_{k,n} \) is the following collection of data:

- vector bundle \(\mathcal{V} \) on \(\mathbb{C} \) of rank \(k \).
- section \(f \in H^0(C, \mathcal{M} \oplus \mathcal{M}^* \otimes \hbar) \), satisfying the condition \(\mu = 0 \),
 where \(\mathcal{M} = \text{Hom}(\mathcal{V}, \mathcal{W}) \), so that \(\mathcal{W} \) is a trivial bundle of rank \(n \).

\[
ev_p(f) = f(p) \in [\mu^{-1}(0)/GL(V)] \supset N_{k,n}
\]

Quasimap is **stable** if \(f(p) \in N_{k,n} \) for all but finitely many points, known as **singularities** of quasimap.

For the moduli space of quasimaps

\[
QM(N_{k,n}) = \text{stable quasimaps to } N_{k,n}/ \sim
\]

only \(\mathcal{V} \) and \(f \) vary, while \(C \) and \(\mathcal{W} \) remain the same.

\[
\text{deg}(f) := \text{deg}(\mathcal{V}), \quad QM(N_{k,n}) = \bigsqcup_{d \geq 0} QM^d(N_{k,n}).
\]
Relative quasimaps

Resolution, to make evaluation map proper:

\[
QM^d(N_{k,n})_{\text{relative } p} \xrightarrow{\sim \text{ev}_p} QM^d(N_{k,n})_{\text{nonsing } p} \xrightarrow{\text{ev}_p} N_{k,n}
\]
Relative quasimaps

Resolution, to make evaluation map proper:

\[QM^d(N_{k,n})_{\text{relative } p} \xrightarrow{\text{ev}_p} \tilde{\text{ev}}_p \]

\[QM^d(N_{k,n})_{\text{nonsing } p} \xrightarrow{\text{ev}_p} N_{k,n} \]
Relative quasimaps

Resolution, to make evaluation map proper:

\[QM^d(N_{k,n})_{\text{relative } p} \]

\[\tilde{ev}_p \]

\[QM^d(N_{k,n})_{\text{nonsing } p} \]

\[ev_p \]

\[N_{k,n} \]

That allows the curve to break: emergence of “\textit{accordeons}”:

\[p' \rightarrow C' \xrightarrow{f'} N_{k,n} \]

\[\pi \]

\[p \rightarrow C \]

\(i \)\(\pi \) is a stabilization of \((C', p')\)

\(ii \)\(f' \): nonsing at \(p' \) and nodes of \(C' \)

\(iii \)\(\text{Aut}(f') \) is finite
Virtual sheaves

$QM^d(N_k,n)$ have perfect deformation-obstruction theory:

- If $(\mathcal{V}, \mathcal{W})$ defines quasimap nonsingular at p,

 $$T_{(\mathcal{V}, \mathcal{W})}^{\text{vir}} QM^d_{\text{nonsing } p}(N_k,n) = \text{Def} - \text{Obs} = H^\bullet(\mathcal{P} \oplus \hbar \mathcal{P}^*),$$

 where \mathcal{P} is the polarization bundle on the curve \mathcal{C}:

 $$\mathcal{P} = \mathcal{W} \otimes \mathcal{V}^* - \mathcal{V}^* \otimes \mathcal{V}.$$

- Virtual structure sheaf:

 $$\hat{\mathcal{O}}_{\text{vir}} = \mathcal{O}_{\text{vir}} \otimes \mathcal{K}_{\text{vir}}^{1/2} \ldots,$$

 where $\mathcal{K}_{\text{vir}} = \det^{-1} T_{\text{vir}}^{\text{vir}} QM^d$ is the virtual canonical bundle.
Virtual sheaves

\(QM^d(N_{k,n}) \) have perfect deformation-obstruction theory:

- If \((\mathcal{V}, \mathcal{W})\) defines quasimap nonsingular at \(p \),

 \[
 T^{\text{vir}}_{(\mathcal{V}, \mathcal{W})} QM^d_{\text{nonsing}}(N_{k,n}) = \text{Def} - \text{Obs} = H^\bullet (\mathcal{P} \oplus \hbar \mathcal{P}^*),
 \]

 where \(\mathcal{P} \) is the polarization bundle on the curve \(\mathcal{C} \):

 \[
 \mathcal{P} = \mathcal{W} \otimes \mathcal{V}^* - \mathcal{V}^* \otimes \mathcal{V}.
 \]

- Virtual structure sheaf:

 \[
 \mathcal{O}_{\text{vir}} = \mathcal{O}_{\text{vir}} \otimes \mathcal{K}_{\text{vir}}^{1/2} \ldots,
 \]

 where \(\mathcal{K}_{\text{vir}} = \det^{-1} T^{\text{vir}} QM^d \) is the virtual canonical bundle.
Virtual sheaves

$QM^d(N_k,n)$ have perfect deformation-obstruction theory:

- If $(\mathcal{V}, \mathcal{W})$ defines quasimap nonsingular at p,

$$T_{(\mathcal{V}, \mathcal{W})}^\text{vir} QM^d_{\text{nonsing } p}(N_k,n) = \text{Def} - \text{Obs} = H^\bullet(\mathcal{P} \oplus \hbar \mathcal{P}^*),$$

where \mathcal{P} is the polarization bundle on the curve C:

$$\mathcal{P} = \mathcal{W} \otimes \mathcal{V}^* - \mathcal{V}^* \otimes \mathcal{V}.$$

- Virtual structure sheaf:

$$\hat{\mathcal{O}}_\text{vir} = \mathcal{O}_\text{vir} \otimes \mathcal{K}^{1/2}_\text{vir} \cdots,$$

where $\mathcal{K}_\text{vir} = \det^{-1} T^\text{vir} QM^d$ is the virtual canonical bundle.
Virtual sheaves

\(QM^d(N_k,n) \) have perfect deformation-obstruction theory:

- If \((\mathcal{V}, \mathcal{W})\) defines quasimap nonsingular at \(p\),

\[
T_{\mathcal{V}, \mathcal{W}}^{\text{vir}} QM^d_{\text{nonsing} p}(N_k,n) = \text{Def} - \text{Obs} = H^\bullet(\mathcal{P} \oplus \hbar \mathcal{P}^*),
\]

where \(\mathcal{P}\) is the polarization bundle on the curve \(\mathcal{C}\):

\[
\mathcal{P} = \mathcal{W} \otimes \mathcal{V}^* - \mathcal{V}^* \otimes \mathcal{V}.
\]

- Virtual structure sheaf:

\[
\hat{\mathcal{O}}_{\text{vir}} = \mathcal{O}_{\text{vir}} \otimes \mathcal{K}_{\text{vir}}^{1/2} \ldots,
\]

where \(\mathcal{K}_{\text{vir}} = \det^{-1} T_{\text{vir}} QM^d\) is the virtual canonical bundle.
Virtual sheaves

$QM^d(N_k, n)$ have perfect deformation-obstruction theory:

- If (V, W) defines quasimap nonsingular at p,

$$T^\text{vir}_{(V, W)} QM^d_{\text{nonsing } p(N_k, n)} = \text{Def} - \text{Obs} = H^\bullet(\mathcal{P} \oplus \hbar \mathcal{P}^*),$$

where \mathcal{P} is the polarization bundle on the curve C:

$$\mathcal{P} = W \otimes V^* - V^* \otimes V.$$

- Virtual structure sheaf:

$$\hat{\mathcal{O}}_{\text{vir}} = \mathcal{O}_{\text{vir}} \otimes \mathcal{K}^{1/2}_{\text{vir}} \ldots,$$

where $\mathcal{K}_{\text{vir}} = \det^{-1} T^\text{vir} QM^d$ is the virtual canonical bundle.
Pushfowards and degeneration formula

How to degenerate curve in a suitable way?

Avoiding singularities → Degeneration formula:

\[\chi(QM(C_\epsilon \to N_{k,n}), \hat{\text{vir}} z^d) = (G^{-1} ev_1, * (\hat{\text{vir}} z^d), ev_2, * (\hat{\text{vir}} z^d)) \]

Here pairing \((\mathcal{F}, \mathcal{G}) := \chi(\mathcal{F} \otimes \mathcal{G} \otimes K^{-1/2}),\)

\[ev_i : QM(C_{0,i} \to N_{k,n})_{\text{relative gluing point}} \to N_{k,n} \]

so that \(G\) is a gluing operator:

\[G = \sum_{d=0}^{\infty} z^d ev_{p_1, p_2, *} \left(QM_{\text{relative } p_1, p_2}, \hat{\text{vir}} \right) \in K_T(N_{k,n}) \otimes^2 [[z]] \]
How to degenerate curve in a suitable way?

Avoiding singularities → Degeneration formula:

$$\chi(QM(C_\epsilon \to N_{k,n}), \hat{\mathcal{O}}_{\text{vir}} z^d) = (G^{-1} \text{ev}_1,)(\hat{\mathcal{O}}_{\text{vir}} z^d), \text{ev}_2,)(\hat{\mathcal{O}}_{\text{vir}} z^d))$$

Here pairing $$(\mathcal{F}, \mathcal{G}) := \chi(\mathcal{F} \otimes \mathcal{G} \otimes K^{-1/2})$$,

$$\text{ev}_i : QM(C_{0,i} \to N_{k,n})_{\text{relative gluing point}} \to N_{k,n}$$

so that G is a gluing operator:

$$G = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_2,}(QM_{\text{relative } p_1,p_2,}, \hat{\mathcal{O}}_{\text{vir}}) \in K_T(N_{k,n}) \otimes [z]$$
Pushforwards and degeneration formula

How to degenerate curve in a suitable way?

Avoiding singularities → Degeneration formula:

$$\chi(QM(C_\epsilon \to N_{k,n}), \hat{\mathcal{O}}_{\text{vir}} z^d) = (G^{-1} \text{ev}_1, \ast (\hat{\mathcal{O}}_{\text{vir}} z^d), \text{ev}_2, \ast (\hat{\mathcal{O}}_{\text{vir}} z^d))$$

Here pairing $$(\mathcal{F}, \mathcal{G}) := \chi(\mathcal{F} \otimes \mathcal{G} \otimes K^{-1/2})$$,

$$\text{ev}_i : QM(C_{0,i} \to N_{k,n})_{\text{relative gluing point}} \to N_{k,n}$$

so that G is a gluing operator:

$$G = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1, p_2, \ast} \left(QM_{\text{relative } p_1, p_2}, \hat{\mathcal{O}}_{\text{vir}} \right) \in K_T(N_{k,n}) \otimes [z]$$
Pushforwards and degeneration formula

How to degenerate curve in a suitable way?

Avoiding singularities \rightarrow Degeneration formula:

$$\chi(QM(\mathcal{C}_\epsilon \rightarrow N_{k,n}), \hat{\mathcal{O}}_{\text{vir}} z^d) = (G^{-1} ev_1, \star (\hat{\mathcal{O}}_{\text{vir}} z^d), ev_2, \star (\hat{\mathcal{O}}_{\text{vir}} z^d))$$

Here pairing $(\mathcal{F}, \mathcal{G}) := \chi(\mathcal{F} \otimes \mathcal{G} \otimes K^{-1/2})$,

$$ev_i : QM(\mathcal{C}_{0,i} \rightarrow N_{k,n})_{\text{relative gluing point}} \rightarrow N_{k,n}$$

so that G is a gluing operator \leftrightarrow:

$$G = \sum_{d=0}^{\infty} z^d ev_{p_1,p_2, \star} \left(QM_{\text{relative } p_1,p_2}, \hat{\mathcal{O}}_{\text{vir}} \right) \in K_T(N_{k,n}) \otimes^2 [[z]]$$
Quantum multiplication, quantum tautological classes

We define the commutative and associative quantum product by means of the following element in $K_T(N_k,n)^\otimes 2[[z]]$:

$$F \otimes \cdot = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_3,*} \left(QM^d_{\text{relative } p_1,p_2,p_3} \exp_p^* \left(G^{-1}F \right) \hat{O}_\text{vir} \right) G^{-1}$$

represented by

$$\left(\begin{array}{c}
G^{-1}F \\
\end{array} \right) G^{-1}$$

$QK_T(N_k,n) = K_T(N_k,n)[[z]]$ is a unital algebra, so that:

$$\hat{1}(z) = 1 \longrightarrow \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2} \hat{O}_\text{vir} \right)$$

Similarly, one defines quantum tautological classes:

$$\hat{\tau}(z) = \tau \longrightarrow \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2} \hat{O}_\text{vir} \tau(\mathcal{V} |_{p_1}) \right)$$
Quantum multiplication, quantum tautological classes

We define the commutative and associative quantum product by means of the following element in $K_T(N_k,n) \otimes^2 [[z]]$:

$$\mathcal{F} \circ \cdot = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_3,*} \left(QM^d_{\text{relative } p_1,p_2,p_3} \cdot \text{ev}^*_p \left(G^{-1} \mathcal{F} \hat{O}_{\text{vir}} \right) \right) G^{-1}$$

represented by

$$
\begin{pmatrix}
\text{\text{G}^{-1}\mathcal{F}} \\
\hline
\end{pmatrix}
\text{G}^{-1}
$$

$QK_T(N_k,n) = K_T(N_k,n)[[z]]$ is a unital algebra, so that:

$$\hat{1}(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2} \cdot \hat{O}_{\text{vir}} \right)$$

Similarly, one defines quantum tautological classes:

$$\hat{\tau}(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2} \cdot \hat{O}_{\text{vir}} \tau(\mathcal{V}|p_1) \right)$$
Quantum multiplication, quantum tautological classes

We define the commutative and associative quantum product by means of the following element in $K_T(N_{k,n}) \otimes^2 [[z]]$:

$$F \otimes \cdot = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_3,*} \left(QM^d_{\text{relative } p_1,p_2,p_3}, \text{ev}^*_p (G^{-1}F) \hat{O}_{\text{vir}} \right) G^{-1}$$

represented by

$$\begin{array}{c}
\text{ev}_{p_2,*} \\
\hat{O}_{\text{vir}}
\end{array}$$

$QK_T(N_{k,n}) = K_T(N_{k,n})[[z]]$ is a unital algebra, so that:

$$\hat{1}(z) = 1 \rightarrow = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2}, \hat{O}_{\text{vir}} \right)$$

Similarly, one defines quantum tautological classes:

$$\hat{\tau}(z) = \tau \rightarrow = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2}, \hat{O}_{\text{vir}} \tau(V|_{p_1}) \right)$$
Quantum multiplication, quantum tautological classes

We define the commutative and associative quantum product by means of the following element in $K_T(N_k,n) \otimes^2 [[z]]$:

$$
\mathcal{F} \otimes \cdot = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_3,*} \left(QM^d_{\text{relative } p_1,p_2,p_3}, \text{ev}^*_{p_2} \left(G^{-1} \hat{\mathcal{O}}_{\text{vir}} \right) \right) G^{-1}
$$

represented by

$$
\begin{array}{c}
\mathcal{F} \\
\hline \hline \mathcal{F} \\
\end{array}
\quad G^{-1}
$$

$QK_T(N_k,n) = K_T(N_k,n)[[z]]$ is a unital algebra, so that:

$$
\hat{1}(z) = 1 \quad = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2}, \hat{\mathcal{O}}_{\text{vir}} \right)
$$

Similarly, one defines quantum tautological classes:

$$
\hat{\tau}(z) = \tau \quad = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2}, \hat{\mathcal{O}}_{\text{vir}} \tau(\mathcal{V}|_{p_1}) \right)
$$
Let us talk about $G = T \times \mathbb{C}_{q}^{	imes}$-equivariant K-theory.

- **Vertex**, a class in $K_{G}(N_{k,n})_{loc}[[z]]$:

$$V^{(\tau)}(z) = \tau = \sum_{d=0}^{\infty} z^{d} \text{ev}_{p_{2}}(Q^{d}_{\text{nonsing}}p_{2}, \hat{O}_{\text{vir}}\tau(V|_{p_{1}}))$$

singular in $q \to 1$ limit.

- **Capped Vertex**, a class in $K_{G}(N_{k,n})[[z]]$:

$$\hat{V}^{(\tau)}(z) = \tau = \sum_{d=0}^{\infty} z^{d} \text{ev}_{p_{2}}(Q^{d}_{\text{relative}}p_{2}, \hat{O}_{\text{vir}}\tau(V|_{p_{1}}))$$

Therefore, $\lim_{q \to 1} \hat{V}^{(\tau)}(z) = \hat{\tau}(z)$

Fusion operator is defined as the following class in $K_{G}^{\otimes 2}(N_{k,n})_{loc}[[z]]$:

$$\Psi(z) = \sum_{d=0}^{\infty} z^{d} \text{ev}_{p_{1}, p_{2}}(Q^{d}_{\text{nonsing}}p_{2}, \hat{O}_{\text{vir}})$$
Vertices and Fusion operator

Let us talk about \(G = T \times \mathbb{C}_q^\times \)-equivariant K-theory.

▶ **Vertex**, a class in \(K_G(N_k,n)_{\text{loc}}[[z]] \):

\[
V^{(\tau)}(z) = \tau \xrightarrow{} = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{nonsing} p_2}, \hat{\mathcal{O}}_{\text{vir}} \tau(\mathcal{V}|_{p_1}) \right)
\]

singular in \(q \to 1 \) limit.

▶ **Capped Vertex**, a class in \(K_G(N_k,n)[[z]] \):

\[
\hat{V}^{(\tau)}(z) = \tau \xrightarrow{} = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative} p_2}, \hat{\mathcal{O}}_{\text{vir}} \tau(\mathcal{V}|_{p_1}) \right)
\]

Therefore, \(\lim_{q \to 1} \hat{V}^{(\tau)}(z) = \hat{\tau}(z) \)

Fusion operator is defined as the following class in \(K_G^2(N_k,n)_{\text{loc}}[[z]] \):

\[
\Psi(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_2,*} \left(QM^d_{\text{relative} p_1, \text{nonsing} p_2}, \hat{\mathcal{O}}_{\text{vir}} \right)
\]
Vertices and Fusion operator

Let us talk about $G = T \times \mathbb{C}_q^\times$-equivariant K-theory.

- **Vertex**, a class in $K_G(N_{k,n})_{\text{loc}}[[z]]$:

$$V^{(\tau)}(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{nonsing } p_2}, \hat{\Omega}_{\text{vir}} T(\mathcal{V} | p_1) \right)$$

singular in $q \to 1$ limit.

- **Capped Vertex**, a class in $K_G(N_{k,n})[[z]]$:

$$\hat{V}^{(\tau)}(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2}, \hat{\Omega}_{\text{vir}} T(\mathcal{V} | p_1) \right)$$

Therefore, $\lim_{q \to 1} \hat{V}^{(\tau)}(z) = \hat{\tau}(z)$

Fusion operator is defined as the following class in $K_G^\otimes 2(N_{k,n})_{\text{loc}}[[z]]$:

$$\Psi(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_2,*} \left(QM^d_{\text{nonsing } p_2}, \hat{\Omega}_{\text{vir}} \right)$$
Let us talk about $G = T \times \mathbb{C}^\times_q$-equivariant K-theory.

- **Vertex**, a class in $K_G(N_{k,n})_{\text{loc}}[[z]]$:

 \[
 V^{(\tau)}(z) = \tau \bullet = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{nonsing} p_2}, \hat{O}_{\text{vir}} \tau(\mathcal{V}|_{p_1}) \right)
 \]

 singular in $q \to 1$ limit.

- **Capped Vertex**, a class in $K_G(N_{k,n})[[z]]$:

 \[
 \hat{V}^{(\tau)}(z) = \tau \blackrightarrow = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative} p_2}, \hat{O}_{\text{vir}} \tau(\mathcal{V}|_{p_1}) \right)
 \]

 Therefore, $\lim_{q \to 1} \hat{V}^{(\tau)}(z) = \hat{\tau}(z)$

Fusion operator is defined as the following class in $K_G^\otimes 2(N_{k,n})_{\text{loc}}[[z]]$:

\[
\Psi(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_2,*} \left(QM^d_{\text{nonsing} p_2}, \hat{O}_{\text{vir}} \right)
\]
Vertices and Fusion operator

Let us talk about $G = T \times \mathbb{C}_q^\times$-equivariant K-theory.

- **Vertex**, a class in $K_G(N_k,n)_{\text{loc}}[[z]]$:

$$V^{(\tau)}(z) = \tau \bullet = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{nonsing } p_2}, \hat{O}_{\text{vir}} \tau (\mathcal{V}_{\mid p_1}) \right)$$

singular in $q \to 1$ limit.

- **Capped Vertex**, a class in $K_G(N_k,n)[[z]]$:

$$\hat{V}^{(\tau)}(z) = \tau \bullet \rightarrow = \sum_{d=0}^{\infty} z^d \text{ev}_{p_2,*} \left(QM^d_{\text{relative } p_2}, \hat{O}_{\text{vir}} \tau (\mathcal{V}_{\mid p_1}) \right)$$

Therefore, $\lim_{q \to 1} \hat{V}^{(\tau)}(z) = \hat{\tau}(z)$

Fusion operator is defined as the following class in $K_G^\otimes 2(N_k,n)_{\text{loc}}[[z]]$:

$$\Psi(z) = \sum_{d=0}^{\infty} z^d \text{ev}_{p_1,p_2,*} \left(QM^d_{\text{relative } p_1, \text{nonsing } p_2}, \hat{O}_{\text{vir}} \right)$$
Fusion relates two types of vertices:

\[\hat{V}^{(\tau)}(z) = \Psi(z) \bar{V}^{(\tau)}(z) \]

Theorem. i) [A. Okounkov] Fusion operator satisfies q-difference equation:

\[
\Psi(qz) = M(z)\Psi(z)\mathcal{O}(1)^{-1},
\]

where \(\mathcal{O}(1)\) is the operator of classical multiplication by the corresponding line bundle and

\[
M(z) = \sum_{d=0}^{\infty} z^d ev_*(QM^d_{\text{relative } p_1, p_2} \cdot \hat{O}_{\text{vir}} \det H^* (\mathcal{V} \otimes \pi^*(\mathcal{O}_{p_1}))) G^{-1},
\]

where \(\pi\) is a projection from semistable curve \(\mathcal{C}' \to \mathcal{C}\) and \(\mathcal{O}_{p_1}\) is a class of point \(p_1 \in \mathcal{C}\).

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization \(q = 1\) the operator \(M(z)\) coincides with the operator of quantum multiplication by the quantum line bundle:

\[
M(z)|_{q=1} = \mathcal{O}(1)(z) \otimes .
\]
Theorem. i) [A. Okounkov] Fusion operator satisfies q-difference equation:

\[\Psi(qz) = M(z)\Psi(z)\mathcal{O}(1)^{-1}, \]

where \(\mathcal{O}(1) \) is the operator of classical multiplication by the corresponding line bundle and

\[M(z) = \sum_{d=0}^{\infty} z^d \text{ev}_* \left(QM_{\text{relative}}^{d}p_1,p_2, \hat{\Omega}_{\text{vir}} \det H^\bullet\left(V \otimes \pi^* (\mathcal{O}_{p_1}) \right) \right) G^{-1}, \]

where \(\pi \) is a projection from semistable curve \(\mathcal{C}' \to \mathcal{C} \) and \(\mathcal{O}_{p_1} \) is a class of point \(p_1 \in \mathcal{C} \).

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization \(q = 1 \) the operator \(M(z) \) coincides with the operator of quantum multiplication by the quantum line bundle:

\[M(z)|_{q=1} = \widehat{\mathcal{O}(1)}(z) \otimes. \]
q-difference equation

Fusion relates two types of vertices:

\[\hat{V}^{(\tau)}(z) = \Psi(z) V^{(\tau)}(z) \]

\[\tau = \tau \]

Theorem. i) [A. Okounkov] Fusion operator satisfies q-difference equation:

\[\Psi(qz) = M(z) \Psi(z) O(1)^{-1}, \]

where \(O(1) \) is the operator of classical multiplication by the corresponding line bundle and

\[M(z) = \sum_{d=0}^{\infty} z^d \text{ev}_* \left(QM^d_{\text{relative } p_1, p_2} \hat{O}_{\text{vir}} \det H^* \left(\mathcal{V} \otimes \pi^*(O_{p_1}) \right) \right) G^{-1}, \]

where \(\pi \) is a projection from semistable curve \(C' \to C \) and \(O_{p_1} \) is a class of point \(p_1 \in C \).

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization \(q = 1 \) the operator \(M(z) \) coincides with the operator of quantum multiplication by the quantum line bundle:

\[M(z)|_{q=1} = \hat{O}(1)(z) \otimes . \]
q-difference equation

Fusion relates two types of vertices:

\[\hat{V}^{(\tau)}(z) = \Psi(z)V^{(\tau)}(z) \]

\[\tau = \tau \]

Theorem. i) [A. Okounkov] Fusion operator satisfies q-difference equation:

\[\Psi(qz) = M(z)\psi(z)O(1)^{-1}, \]

where \(O(1) \) is the operator of classical multiplication by the corresponding line bundle and

\[M(z) = \sum_{d=0}^{\infty} z^d E_{\text{vir}} \left(\left. QM^d_{\text{relative}} p_1, p_2, \hat{O}_{\text{vir}} \det H^* \left(\mathcal{V} \otimes \pi^* (O_{p_1}) \right) \right| G^{-1}, \]

where \(\pi \) is a projection from semistable curve \(C' \to C \) and \(O_{p_1} \) is a class of point \(p_1 \in C \).

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization \(q = 1 \) the operator \(M(z) \) coincides with the operator of quantum multiplication by the quantum line bundle:

\[M(z)|_{q=1} = \hat{O}(1)(z) \otimes \cdot \]
Theorem. [P. Pushkar, A. Smirnov, A.Z.]

i) Localization formula implies the following integral formula for the vertex:

\[
V_p^{(\tau)}(z) = \frac{1}{2\pi i \alpha_p} \int_{C_p} ds_i \prod_{i=1}^{k} \frac{d s_i}{s_i} e^{-\frac{\ln(z^\#) \ln(s_i)}{\ln(q)}} \prod_{i,j=1}^{k} \varphi\left(\frac{s_i}{s_j}\right) \prod_{i=1}^{n} \prod_{j=1}^{k} \varphi\left(\frac{q}{\hbar} \frac{s_i}{a_i}\right) \tau(s_1, \ldots, s_k),
\]

where \(\varphi(x) = \prod_{i=0}^{\infty} (1 - q^i x)\), \(z^\# = (-1)^n \hbar^{n/2} z\), \(\alpha_p\) is a normalization parameter.

ii) The eigenvalues \(\tau_p(z)\) of \(\hat{\tau}(z)\) are labeled by fixed points are given by the following formula:

\[
\tau_p(z) = \lim_{q \to 1} \frac{V_p^{(\tau)}(z)}{V_p^{(1)}(z)} = \tau(x_{i_1}, x_{i_2}, \ldots, x_{i_k})
\]

where \(V_p^{(\tau)}(z)\) are the components of bare vertex in the basis of fixed points and \(\{x_{i_r}\}\) are the solutions of Bethe equations.
K-theory ring

Theorem. [P. Pushkar, A. Smirnov, A.Z.]

i) Localization formula implies the following integral formula for the vertex:

\[V_p^{(\tau)}(z) = \frac{1}{2\pi i \alpha_p} \int_{C_p} \prod_{i=1}^k ds_i \frac{e^{-\ln(z^\#)\ln(s_i)}}{s_i} \prod_{i,j=1}^k \varphi\left(\frac{s_i}{s_j}\right) \prod_{i=1}^n \prod_{j=1}^k \varphi\left(\frac{q \frac{s_i}{a_j}}{\frac{q s_j}{a_i}}\right) \tau(s_1, \ldots, s_k), \]

where \(\varphi(x) = \prod_{i=0}^\infty (1 - q^i x) \), \(z^\# = (-1)^n \frac{\hbar^n}{2} z \), \(\alpha_p \) is a normalization parameter.

ii) The eigenvalues \(\tau_p(z) \) of \(\hat{\tau}(z) \) are labeled by fixed points are given by the following formula:

\[\tau_p(z) = \lim_{q \to 1} \frac{V_p^{(\tau)}(z)}{V_p^{(1)}(z)} = \tau(x_{i_1}, x_{i_2}, \ldots, x_{i_k}) \]

where \(V_p^{(\tau)}(z) \) are the components of bare vertex in the basis of fixed points and \(\{x_{i_r}\} \) are the solutions of Bethe equations.
Theorem. [P. Pushkar, A. Smirnov, A.Z.]

i) Localization formula implies the following integral formula for the vertex:

\[
V_p^{(\tau)}(z) = \frac{1}{2\pi i \alpha_p} \int_{C_p} \prod_{i=1}^{k} \frac{ds_i}{s_i} \ e^{-\frac{\ln(z_\#) \ln(s_i)}{\ln(q)}} \prod_{i,j=1}^{k} \frac{\varphi\left(\frac{s_i}{s_j}\right)}{\varphi\left(\frac{q \ s_i}{h \ a_i}\right)} \prod_{i=1}^{n} \prod_{j=1}^{k} \frac{\varphi\left(\frac{q \ s_i}{h \ s_j}\right)}{\varphi\left(\frac{s_j}{a_i}\right)} \tau(s_1, \cdots, s_k),
\]

where \(\varphi(x) = \prod_{i=0}^{\infty}(1 - q^i x)\), \(z_\# = (-1)^n \frac{\hbar^n}{2} z\), \(\alpha_p\) is a normalization parameter.

ii) The eigenvalues \(\tau_p(z)\) of \(\hat{\tau}(z)\) are labeled by fixed points are given by the following formula:

\[
\tau_p(z) = \lim_{q \to 1} \frac{V_p^{(\tau)}(z)}{V_p^{(1)}(z)} = \tau(x_{i_1}, x_{i_2}, \cdots, x_{i_k})
\]

where \(V_p^{(\tau)}(z)\) are the components of bare vertex in the basis of fixed points and \(\{x_{i_r}\}\) are the solutions of Bethe equations.
Relation to Many-Body systems: (partial) flags

Givental and his collaborators (1990s and early 2000s): relation between quantum geometry of flag varieties and many body systems.

Cotangent bundle to partial flag variety is a Nakajima variety of type A:

\[\mathcal{W}_{n-1} \]

\[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_{n-1} \]
Givental and his collaborators (1990s and early 2000s): relation between quantum geometry of flag varieties and many body systems.

Cotangent bundle to partial flag variety is a Nakajima variety of type A:
Relation to Many-Body systems: (partial) flags

Givental and his collaborators (1990s and early 2000s): relation between quantum geometry of flag varieties and many body systems.

Cotangent bundle to partial flag variety is a Nakajima variety of type A:
Relation to Ruijsenaars-Schneider and Toda systems

Relations between classical multiparticle systems and quantum integrable models were observed on various levels (Mukhin, Tarasov, Varchenko, Zabrodin, Zotov, ...)

Gaiotto and Koroteev indicated that in the context of Gauge/Bethe correspondence of Nekrasov and Shatashvili.

Generalization of Givental and Kim result:

Theorem. [P. Koroteev, P. Pushkar, A. Smirnov, A.Z., 2017] Quantum equivariant K-theory of $T^*F^\ell (F^\ell)$ is an algebra of functions on the Lagrangian subvariety in the phase space of trigonometric Ruijsenaars-Schneider (relativistic Toda) system.

ii) [P. Koroteev, A.Z., 2018] Vertex functions are the eigenfunctions of quantum tRS hamiltonians.
Relation to Ruijsenaars-Schneider and Toda systems

Relations between classical **multiparticle systems** and **quantum integrable models** were observed on various levels (Mukhin, Tarasov, Varchenko, Zabrodin, Zotov, ...)

Gaiotto and Koroteev indicated that in the context of Gauge/Bethe correspondence of Nekrasov and Shatashvili.

Generalization of Givental and Kim result:

Theorem. [P. Koroteev, P. Pushkar, A. Smirnov, A.Z., 2017] Quantum equivariant K-theory of $T^*\mathcal{F}_\ell$ (\mathcal{F}_ℓ) is an algebra of functions on the Lagrangian subvariety in the phase space of trigonometric Ruijsenaars-Schneider (relativistic Toda) system.

 ii) [P. Koroteev, A.Z., 2018] Vertex functions are the eigenfunctions of quantum tRS hamiltonians.
Relation to Ruijsenaars-Schneider and Toda systems

Relations between classical \textbf{multiparticle systems} and \textbf{quantum integrable models} were observed on various levels (Mukhin, Tarasov, Varchenko, Zabrodin, Zotov, ...)

Gaiotto and Koroteev indicated that in the context of Gauge/Bethe correspondence of Nekrasov and Shatashvili.

Generalization of Givental and Kim result:

\textbf{Theorem.} [P. Koroteev, P. Pushkar, A. Smirnov, A.Z., 2017] Quantum equivariant K-theory of $T^*F_\ell (F_\ell)$ is an algebra of functions on the Lagrangian subvariety in the phase space of trigonometric Ruijsenaars-Schneider (relativistic Toda) system.

ii)[P. Koroteev, A.Z., 2018] Vertex functions are the eigenfunctions of quantum tRS hamiltonians.
Relation to Ruijsenaars-Schneider and Toda systems

Relations between classical multiparticle systems and quantum integrable models were observed on various levels (Mukhin, Tarasov, Varchenko, Zabrodin, Zotov, ...)

Gaiotto and Koroteev indicated that in the context of Gauge/Bethe correspondence of Nekrasov and Shatashvili.

Generalization of Givental and Kim result:

Theorem. [P. Koroteev, P. Pushkar, A. Smirnov, A.Z., 2017] Quantum equivariant K-theory of $T^*\mathbb{F}_\ell$ (\mathbb{F}_ℓ) is an algebra of functions on the Lagrangian subvariety in the phase space of trigonometric Ruijsenaars-Schneider (relativistic Toda) system.

 ii) [P. Koroteev, A.Z., 2018] Vertex functions are the eigenfunctions of quantum tRS hamiltonians.
Further directions

- There are quantum Wronskian relations, which Q-operators satisfy (\(\tilde{\mathcal{Q}}Q\)-system). Geometric meaning?

 Recent answer is given in terms of q-opers by P. Koroteev, D. Sage, A. Zeitlin. Enumerative meaning?

- Enumerative geometry of symplectic resolutions \(\rightarrow\) new kinds of integrable systems. The simplest example: Hilbert scheme of points on a plane.

- Elliptic quantum groups, integrable systems and Elliptic cohomology from 4-dimensional Gauge theories. Some recent progress by M. Aganagic and A. Okounkov.

- Quantum q-Langlands correspondence:
 P. Koroteev, D. Sage, A.Z.: quantum-classical duality as various coordinates on the space of (SL(N), q)-opers, general case in progress.
Further directions

- There are quantum Wronskian relations, which Q-operators satisfy (\(\tilde{Q}Q\)-system). Geometric meaning?

 Recent answer is given in terms of q-opers by P. Koroteev, D. Sage, A. Zeitlin. Enumerative meaning?

- Enumerative geometry of symplectic resolutions \(\rightarrow\) new kinds of integrable systems. The simplest example: Hilbert scheme of points on a plane.

- Elliptic quantum groups, integrable systems and Elliptic cohomology from 4-dimensional Gauge theories. Some recent progress by M. Aganagic and A. Okounkov.

Further directions

- There are quantum Wronskian relations, which Q-operators satisfy (\(\tilde{Q}Q\)-system). Geometric meaning?

 Recent answer is given in terms of q-opers by P. Koroteev, D. Sage, A. Zeitlin. Enumerative meaning?

- Enumerative geometry of symplectic resolutions \(\rightarrow\) new kinds of integrable systems. The simplest example: Hilbert scheme of points on a plane.

- Elliptic quantum groups, integrable systems and Elliptic cohomology from 4-dimensional Gauge theories. Some recent progress by M. Aganagic and A. Okounkov.

- Quantum q-Langlands correspondence:

 P. Koroteev, D. Sage, A.Z.: quantum-classical duality as various coordinates on the space of (SL(N), q)-opers, general case in progress.

Further directions

- There are quantum Wronskian relations, which Q-operators satisfy ($\tilde{Q}Q$-system). Geometric meaning?

 Recent answer is given in terms of q-opers by P. Koroteev, D. Sage, A. Zeitlin. Enumerative meaning?

- Enumerative geometry of symplectic resolutions → new kinds of integrable systems. The simplest example: Hilbert scheme of points on a plane.

- Elliptic quantum groups, integrable systems and Elliptic cohomology from 4-dimensional Gauge theories. Some recent progress by M. Aganagic and A. Okounkov.

- Quantum q-Langlands correspondence:
 P. Koroteev, D. Sage, A.Z.: quantum-classical duality as various coordinates on the space of (SL(N), q)-opers, general case in progress.
Further directions

- There are quantum Wronskian relations, which Q-operators satisfy (\(\tilde{Q}Q\)-system). Geometric meaning?
 Recent answer is given in terms of q-opers by P. Koroteev, D. Sage, A. Zeitlin. Enumerative meaning?

- Enumerative geometry of symplectic resolutions \rightarrow new kinds of integrable systems. The simplest example: Hilbert scheme of points on a plane.

- Elliptic quantum groups, integrable systems and Elliptic cohomology from 4-dimensional Gauge theories. Some recent progress by M. Aganagic and A. Okounkov.

- Quantum q-Langlands correspondence:
 P. Koroteev, D. Sage, A.Z.: quantum-classical duality as various coordinates on the space of (SL(N), q)-opers, general case in progress.
Further directions

- There are quantum Wronskian relations, which Q-operators satisfy ($\tilde{Q}Q$-system). Geometric meaning?

 Recent answer is given in terms of q-opers by P. Koroteev, D. Sage, A. Zeitlin. Enumerative meaning?

- Enumerative geometry of symplectic resolutions \rightarrow new kinds of integrable systems. The simplest example: Hilbert scheme of points on a plane.

- Elliptic quantum groups, integrable systems and Elliptic cohomology from 4-dimensional Gauge theories. Some recent progress by M. Aganagic and A. Okounkov.

- Quantum q-Langlands correspondence:

 P. Koroteev, D. Sage, A.Z.: quantum-classical duality as various coordinates on the space of (SL(N), q)-opers, general case in progress.

Thank you!