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Introduction

We will talk about the relationship between two seemingly independent
areas of mathematics:

I Quantum Integrable Systems

Exactly solvable models of statistical physics: spin chains, vertex
models

1930s: Hans Bethe: Bethe ansatz solution of Heisenberg model

1960-70s: R.J. Baxter, C.N. Young: Yang-Baxter equation,
Baxter operator

1980s: Development of ”QISM” by Leningrad school leading to the
discovery of quantum groups by Drinfeld and Jimbo

Since 1990s: textbook subject and an established area of
mathematics and physics.

I Enumerative geometry: quantum K-theory

Generalization of quantum cohomology in the early 2000s by A.
Givental, Y.P. Lee and collaborators. Recently big progress in this
direction by A. Okounkov and his school.
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Path to this relationship:

I First hints: work of Nekrasov and Shatashvili on 3-dimensional
gauge theories, now known as Gauge-Bethe correspondence:

N. Nekrasov, S. Shatashvili, Supersymmetric vacua and Bethe
ansatz, arXiv:0901.4744
N. Nekrasov, S. Shatashvili, Quantum integrability and
supersymmetric vacua, arXiv:0901.4748

I Subsequent work in geometric representation theory:

A. Braverman, D. Maulik, A. Okounkov, Quantum cohomology of
the Springer resolution, Adv. Math. 227 (2011) 421-458
D. Maulik, A. Okounkov, Quantum Groups and Quantum
Cohomology, arXiv:1211.1287
A. Okounkov, Lectures on K-theoretic computations in
enumerative geometry, arXiv: arXiv:1512.07363
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In fact, this is a part of an ambitious program:

Understanding (enumerative) geometry of symplectic resolutions:

”Lie algebras of XXI century” (A. Okounkov’ 2012)

Important examples: Springer resolution, Hilbert scheme of points in
the plane, Hypertoric varieties,...

A large class of symplectic resolutions is provided by Nakajima quiver
varieties (simplest subclass: T ∗Gr(k, n))

In this talk our main example will be T ∗Gr(k, n) and more generally,
cotangent bundles to (partial) flag varieties.
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Based on:

I Petr P. Pushkar, Andrey Smirnov, A.Z., Baxter Q-operator from
quantum K-theory, arXiv:1612.08723

I Peter Koroteev, Petr P. Pushkar, Andrey Smirnov, A.Z., Quantum
K-theory of Quiver Varieties and Many-Body Systems,
arXiv:1705.10419

I Peter Koroteev, Anton M. Zeitlin, Difference Equations for
K-theoretic Vertex Functions of Type-A Nakajima Varieties
arXiv:1802.04463

and to some extent on

I Peter Koroteev, Daniel S. Sage, Anton M. Zeitlin, (SL(N),q)-opers,
the q-Langlands correspondence, and quantum/classical duality
arXiv:1811.09937
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Quantum groups and quantum integrability

Nekrasov-Shatashvili ideas

Quantum K-theory and integrability

Back to Givental’s ideas+further directions
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Loop algebras and evaluation modules

Let us consider Lie algebra g.

The associated loop algebra is ĝ = g[t, t−1] and t is known as spectral
parameter.

The following representations, known as evaluation modules form a
tensor category of ĝ:

V1(a1)⊗ V2(a2)⊗ · · · ⊗ Vn(an),

where

I Vi are representations of g

I ai are values for t



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

Loop algebras and evaluation modules

Let us consider Lie algebra g.
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Quantum groups

Quantum group

U~(ĝ)

is a deformation of U(ĝ), with a nontrivial intertwiner RV1,V2(a1/a2):

V1(a1)⊗ V2(a2)

V2(a2)⊗ V1(a1)

which is a rational function of a1, a2, satisfying Yang-Baxter equation:

The generators of U~(ĝ) emerge as matrix elements of R-matrices (the
so-called FRT construction).
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Integrability and Baxter algebra

Source of integrability: commuting transfer matrices, generating Baxter
algebra which are weighted traces of

R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys
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Baxter algebra and Integrability

Source of integrability: commuting transfer matrices, generating Baxter
algebra which are weighted traces of

R̃W (u),Hphys
: W (u)⊗Hphys →W (u)⊗Hphys

over auxiliary W (u) space:

TW (u) = TrW (u)

(
(Z ⊗ 1) R̃W (u),Hphys

)

Here Z ∈ eh, where h ∈ g are diagonal matrices.
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Integrability:

[TW ′(u
′),TW (u)] = 0

There are special transfer matrices is called Baxter Q-operators. Such
operators generate all Baxter algebra.

Primary goal for physicists is to diagonalize {TW (u)} simultaneously.
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g = sl(2): XXZ spin chain

Textbook example (and main example in this talk) is XXZ Heisenberg
spin chain:

HXXZ = C2(a1)⊗ C2(a2)⊗ · · · ⊗ C2(an)

States:
↑↑↑↑ ↓ ↑↑↑ ↓ ↑↑↑↑ ↓ ↑↑↑↑↑ ↓↓ ↑↑↑

Here C2 stands for 2-dimensional representation of U~(ŝl2).

Algebraic method to diagonalize transfer matrices:

Algebraic Bethe ansatz

as a part of Quantum Inverse Scattering Method developed in the
1980s.
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Bethe equations and Q-operator

The eigenvalues are generated by symmetric functions of Bethe roots
{xi}:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,

so that the eigenvalues Λ(u) of the Q-operator are the generating
functions for the elementary symmetric functions of Bethe roots:

Λ(u) =
k∏

i=1

(1 + u · xi )

A real challenge is to describe representation-theoretic meaning of
Q-operator for general g (possibly infinite-dimensional).
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q-difference equation

Modern way of looking at Bethe ansatz: solving q-difference equations
for

Ψ(z1, . . . , zk ; a1, . . . , an) ∈ V1(a1)⊗ · · · ⊗ Vn(an)[[z1, . . . , zk ]]

known as

Quantum Knizhnik-Zamolodchikov (aka Frenkel-Reshetikhin) equations:

Ψ(qa1, . . . , an, {zi}) = (Z ⊗ 1⊗ · · · ⊗ 1)RV1,Vn . . .RV1,V2Ψ

+

commuting difference equations in z − variables

Here {zi} are the components of twist variable Z .

The latter series of equations are known as dynamical equations,
studied by Etingof, Felder, Tarasov, Varchenko, . . .

In q → 1 limit we arrive to an eigenvalue problem. Studying the
asymptotics of the corresponding solutions we arrive to Bethe equations
and eigenvectors.
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Nekrasov-Shatashvili ideas

In 2009 Nekrasov and Shatashvili looked at 3d SUSY gauge theories on
C× S1:

with gauge group

G = U(v1)× U(v2)× . . .U(vrankg),

and some ”matter fields” (sections of associated vector G -bundles), to
be specified below.

The collection {vi} determines the weights of the corresponding
subspace in H.

In the simplest case of g = sl(2) we just have one U(v) and

↑↑↑↑ ↓ ↑↑↑ ↓ ↑↑↑↑ ↓ ↑↑↑↑↑ ↓↓ ↑↑↑, and #↓ = v
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Full Gauge/Bethe correspondence dictionary

Gauge group G : U(v1)× U(v2)× . . .U(vrankg)

The set {vi} determines the weight (e.g. number of inverted spins)

Maximal torus: {xi1 , . . . , xivi } — these are Bethe roots variables.

Matter Fields: affine space M

I Standard matter fields: ⊕rankg
i=1 V ∗i ⊗Wi , s.t. dim(Vi ) = vi ;

Wi is a framing (“flavor”) space, where C×a1 × C×a2 × . . . act.
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To have enough supersymmetries ⊕ duals : T ∗M.
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Moduli of Higgs vacua ←→ Nakajima quiver variety:

T ∗M////G = µ−1(0)//G = N

where µ = 0 is a momentum map (low energy configuration) condition.

In the case of quiver with one vertex and one framing:

N = T ∗Gr(v ,w)

.
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N = T ∗Gr(v ,w).

Hilbert space of vacua H ←→ Wilson line operators ←→

equivariant K-theory of Nakajima variety.

Known to be a module for the action of a quantum group U~(ĝ) due to
Nakajima.
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Physicists interested in computing SUSY indices:

str(e−β
/D2

A) = trKer/Deven
(A)− trKer/Dodd

(A) = strindex/D(A)

Mathematically those correspond to (very similar to GW curve
counting!) weighted K-theoretic counts of quasimaps:

C
quasimap f−−−−−−→ Nakajima variety N

The weight (Kähler) parameter is Zdeg(f), which is exactly twist
parameter Z we encountered before.
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/D2

A) = trKer/Deven
(A)− trKer/Dodd

(A) = strindex/D(A)

Mathematically those correspond to (very similar to GW curve
counting!) weighted K-theoretic counts of quasimaps:

C
quasimap f−−−−−−→ Nakajima variety N

The weight (Kähler) parameter is Zdeg(f), which is exactly twist
parameter Z we encountered before.

One can think of quantum K-theory ring:
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Nekrasov and Shatashvili:

Quantum K− theory ring of Nakajima variety =

symmetric polynomials in xij / Bethe equations
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Nekrasov and Shatashvili:

Quantum K− theory ring of Nakajima variety =

symmetric polynomials in xij / Bethe equations

Input by Okounkov:

q− difference equations = qKZ equations + dynamical equations
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I Nakajima variety: N = T ∗Gr(k, n)

I Quantum Integrable System: sl(2) XXZ spin chain.
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Notation

T ∗Gr(k, n) = Nk,n, tkNk,n = N(n).

As a Nakajima variety:

Nk,n = T ∗M////GL(V ) = µ−1(0)s/GL(V ),

where
T ∗M = Hom(V ,W )⊕ Hom(W ,V )

Tautological bundles:

V = T ∗M× V ////GL(V ), W = T ∗M×W ////GL(V )

For any τ ∈ KGL(V )(·) = Λ(x±1
1 , x±1

2 , . . . x±1
k ) we introduce a

tautological bundle:

τ = T ∗M× τ(V )////GL(V )
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Tori, Fixed points and Bethe roots

Torus action:

A = C×a1 × · · · × C×an �W ,

Full torus : T = A× C×~ , where C×~ scales cotangent directions

Fixed points: p = {s1, . . . , sk} ∈ {a1, . . . , an}

Denote A := Q(a1, . . . , an, ~), R := Z(a1, . . . , an, ~), then localized
K-theory is:

KT (N(n))loc = KT (N(n))⊗R A =
n∑

k=0

KT (Nk,n)⊗R A

is a 2n-dimensional A-vector space (Hilbert space for spin chain),
spanned by Op.

Classical Bethe equations: The eigenvalues of the operators of
multiplication by τ are τ(x1, · · · , xk) evaluated at the solutions of the
following equations:

n∏
j=1

(xi − aj) = 0, i = 1, . . . , k, with xi 6= xj
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Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

C−−− → Nk,n

in order to deform tensor product: A ~ B = A⊗B +
∑∞

d=1 A⊗d B zd .

We will also define quantum tautological classes:

τ̂(z) = τ +
∞∑
d=1

τ dz
d ∈ KT (N(n))[[z]]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators
of quantum multiplication by τ̂(z) are given by the values of the
corresponding Laurent polynomials τ(x1, . . . , xk) evaluated at the
solutions of the following equations:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

C−−− → Nk,n

in order to deform tensor product: A ~ B = A⊗B +
∑∞

d=1 A⊗d B zd .

We will also define quantum tautological classes:

τ̂(z) = τ +
∞∑
d=1

τ dz
d ∈ KT (N(n))[[z]]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators
of quantum multiplication by τ̂(z) are given by the values of the
corresponding Laurent polynomials τ(x1, . . . , xk) evaluated at the
solutions of the following equations:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

C−−− → Nk,n

in order to deform tensor product: A ~ B = A⊗B +
∑∞

d=1 A⊗d B zd .

We will also define quantum tautological classes:

τ̂(z) = τ +
∞∑
d=1

τ dz
d ∈ KT (N(n))[[z]]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators
of quantum multiplication by τ̂(z) are given by the values of the
corresponding Laurent polynomials τ(x1, . . . , xk) evaluated at the
solutions of the following equations:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

Quantum tautological classes and Bethe equations

We will use theory of quasimaps:

C−−− → Nk,n

in order to deform tensor product: A ~ B = A⊗B +
∑∞

d=1 A⊗d B zd .

We will also define quantum tautological classes:

τ̂(z) = τ +
∞∑
d=1

τ dz
d ∈ KT (N(n))[[z]]

Theorem. [P. Pushkar, A. Smirnov, A.Z] The eigenvalues of operators
of quantum multiplication by τ̂(z) are given by the values of the
corresponding Laurent polynomials τ(x1, . . . , xk) evaluated at the
solutions of the following equations:

n∏
j=1

xi − aj
~aj − xi

= z ~−n/2
k∏

j=1
j 6=i

xi~− xj
xi − xj~

, i = 1 · · · k,



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

The quantum K-theoretic meaning of the Q-operator

Theorem. [P. Pushkar, A. Smirnov, A.Z.]

I The quantum multiplication on quantum tautological class
corresponding to τu := ⊕m≥0u

mΛmV coincides with Q-operator, i..e

τ̂u(z) = Q(u)

I Explicit universal formulas for quantum products::

Λ̂`V(z) = Λ`V + a1(z) F0Λ`−1
VE−1 + · · ·+ a`(z) F `0E

`
−1,

where am(z) = (~−1)m ~
m(m+1)

2 Km

(m)~!
m∏
i=1

(1−(−1)nz−1~iK)
,

where K ,F0,E−1 are the generators of U~(ŝl2).
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Quasimaps

Quasimap f : C 99K Nk,n is the following collection of data:

I vector bundle V on C of rank k.

I section f ∈ H0(C ,M ⊕M ∗ ⊗ ~), satisfying the condition µ = 0,
where M = Hom(V ,W ), so that W is a trivial bundle of rank n.

evp(f ) = f (p) ∈ [µ−1(0)/GL(V )] ⊃ Nk,n

Quasimap is stable if f (p) ∈ Nk,n for all but finitely many points, known
as singularities of quasimap.

For the moduli space of quasimaps

QM(Nk,n) = stable quasimaps to Nk,n/ ∼

only V and f vary, while C and W remain the same.

deg(f ) := deg(V ), QM(Nk,n) = td≥0QMd(Nk,n).
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as singularities of quasimap.

For the moduli space of quasimaps

QM(Nk,n) = stable quasimaps to Nk,n/ ∼

only V and f vary, while C and W remain the same.

deg(f ) := deg(V ), QM(Nk,n) = td≥0QMd(Nk,n).
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Relative quasimaps

Resolution, to make evaluation map proper:

QMd(Nk,n)relative p

QMd(Nk,n)nonsing p Nk,n

evp

ẽvp
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Relative quasimaps

Resolution, to make evaluation map proper:

QMd(Nk,n)relative p

QMd(Nk,n)nonsing p Nk,n

evp

ẽvp

That allows the curve to break: emergence of “accordeons”:

p′ C′ Nk,n i)π is a stabilization of (C′, p′)

p C ii)f ′ : nonsing at p′ and nodes of C′

iii)Aut(f ′) is finite

f’

π
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Virtual sheaves

QMd(Nk,n) have perfect deformation-obstruction theory:

I If (V ,W ) defines quasimap nonsingular at p,

T vir
(V ,W )QMd

nonsing p(Nk,n) = Def −Obs = H•(P ⊕ ~P∗),

where P is the polarization bundle on the curve C:

P = W ⊗ V ∗ − V ∗ ⊗ V .

I Virtual structure sheaf:

Ôvir = Ovir ⊗K 1/2
vir . . .,

where Kvir = det−1T virQMd is the virtual canonical bundle.
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Pushforwards and degeneration formula

How to degenerate curve in a suitable way?

Avoiding singularities → Degeneration formula:

χ(QM(Cε → Nk,n), Ôvirz
d) = (G−1ev1,∗(Ôvirz

d), ev2,∗(Ôvirz
d))

Here pairing (F,G) := χ(F ⊗ G⊗ K−1/2),

evi : QM(C0,i → Nk,n)relative gluing point → Nk,n

= = G−1
.

so that G is a gluing operator :

G =
∞∑
d=0

zdevp1,p2,∗

(
QMrelative p1,p2

, Ôvir

)
∈ KT (Nk,n)⊗2[[z]]
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, Ôvir

)
∈ KT (Nk,n)⊗2[[z]]



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

Pushforwards and degeneration formula

How to degenerate curve in a suitable way?

Avoiding singularities → Degeneration formula:

χ(QM(Cε → Nk,n), Ôvirz
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Further Directions

Quantum multiplication, quantum tautological classes

We define the commutative and associative quantum product by means

of the following element in KT (Nk,n)⊗
2

[[z]]:

F~ · =
∞∑
d=0

zdevp1,p3,∗

(
QMd

relative p1,p2,p3 , ev∗p2
(G−1

F)Ôvir

)
G−1

represented by

G−1F

G−1

QKT (Nk,n) = KT (Nk,n)[[z]] is a unital algebra, so that:

1̂(z) = 1 =
∞∑
d=0

zdevp2,∗

(
QMd

relative p2 , Ôvir

)
Similarly, one defines quantum tautological classes:

τ̂(z) = τ =
∞∑
d=0

zdevp2,∗

(
QMd

relative p2 , Ôvirτ(V |p1)
)
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)
Similarly, one defines quantum tautological classes:

τ̂(z) = τ =
∞∑
d=0

zdevp2,∗

(
QMd

relative p2 , Ôvirτ(V |p1)
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Vertices and Fusion operator

Let us talk about G = T × C×q -equivariant K-theory.

I Vertex, a class in KG (Nk,n)loc [[z]]:

V (τ)(z) = τ =
∞∑
d=0

zdevp2,∗

(
QMd

nonsing p2 , Ôvirτ(V |p1)
)

singular in q → 1 limit.

I Capped Vertex, a class in KG (Nk,n)[[z]] :

V̂ (τ)(z) = τ =
∞∑
d=0

zdevp2,∗

(
QMd

relative p2 , Ôvirτ(V |p1)
)

Therefore, limq→1 V̂
(τ)(z) = τ̂(z)

Fusion operator is defined as the following class in K⊗2
G (Nk,n)loc [[z]]:

Ψ(z) =
∞∑
d=0

zdevp1,p2,∗

(
QMd

relative p1
nonsing p2

, Ôvir

)
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)

singular in q → 1 limit.

I Capped Vertex, a class in KG (Nk,n)[[z]] :

V̂ (τ)(z) = τ =
∞∑
d=0

zdevp2,∗

(
QMd

relative p2 , Ôvirτ(V |p1)
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q-difference equation

Fusion relates two types of vertices:

V̂ (τ)(z) = Ψ(z)V (τ)(z)

τ = τ

Theorem. i)[A. Okounkov] Fusion operator satisfies q-difference
equation:

Ψ(qz) = M(z)Ψ(z)O(1)−1,

where O(1) is the operator of classical multiplication by the
corresponding line bundle and

M(z) =
∞∑
d=0

zdev∗
(
QMd

relative p1,p2 , Ôvir detH• (V ⊗ π∗(Op1))
)
G−1,

where π is a projection from semistable curve C′ → C and Op1 is a class
of point p1 ∈ C.

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization q = 1 the
operator M(z) coincides with the operator of quantum multiplication by
the quantum line bundle:

M(z)|q=1 = Ô(1)(z)~ ·



Anton Zeitlin

Outline

Quantum Integrability

Nekrasov-Shatashvili
ideas

Quantum K-theory

Further Directions

q-difference equation

Fusion relates two types of vertices:

V̂ (τ)(z) = Ψ(z)V (τ)(z)

τ = τ

Theorem. i)[A. Okounkov] Fusion operator satisfies q-difference
equation:

Ψ(qz) = M(z)Ψ(z)O(1)−1,

where O(1) is the operator of classical multiplication by the
corresponding line bundle and

M(z) =
∞∑
d=0

zdev∗
(
QMd

relative p1,p2 , Ôvir detH• (V ⊗ π∗(Op1))
)
G−1,

where π is a projection from semistable curve C′ → C and Op1 is a class
of point p1 ∈ C.

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization q = 1 the
operator M(z) coincides with the operator of quantum multiplication by
the quantum line bundle:

M(z)|q=1 = Ô(1)(z)~ ·
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corresponding line bundle and

M(z) =
∞∑
d=0

zdev∗
(
QMd

relative p1,p2 , Ôvir detH• (V ⊗ π∗(Op1))
)
G−1,

where π is a projection from semistable curve C′ → C and Op1 is a class
of point p1 ∈ C.

ii) [P. Pushkar, A. Smirnov, A.Z] Under the specialization q = 1 the
operator M(z) coincides with the operator of quantum multiplication by
the quantum line bundle:

M(z)|q=1 = Ô(1)(z)~ ·
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Theorem. [P. Pushkar, A. Smirnov, A.Z.]
i) Localization formula implies the following integral formula for the
vertex:

V (τ)
p (z) =

1

2πiαp

∫
Cp

k∏
i=1

dsi
si

e
−

ln(z]) ln(si )

ln(q)

k∏
i,j=1

ϕ
(

si
sj

)
ϕ
(

q
~

si
sj

) n∏
i=1

k∏
j=1

ϕ
(

q
~

sj
ai

)
ϕ
(

sj
ai

) τ(s1, · · · , sk),

where ϕ(x) =
∏∞

i=0(1− qix), z] = (−1)n~n/2z , αp is a normalization
parameter.

ii) The eigenvalues τ p(z) of τ̂(z) are labeled by fixed points are given by
the following formula:

τ p(z) = lim
q→1

V
(τ)
p (z)

V
(1)
p (z)

= τ(xi1 , xi2 , . . . , xik )

where V
(τ)
p (z) are the components of bare vertex in the basis of fixed

points and {xir } are the solutions of Bethe equations.
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Relation to Many-Body systems: (partial) flags

Givental and his collaborators (1990s and early 2000s): relation between
quantum geometry of flag varieties and many body systems.

Cotangent bundle to partial flag variety is a

Nakajima variety of type A:

v1 v2 . . . vn−1

wn−1
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Relation to Ruijsenaars-Schneider and Toda systems

Relations between classical multiparticle systems and quantum
integrable models were observed on various levels (Mukhin, Tarasov,
Varchenko, Zabrodin, Zotov, ...)

Gaiotto and Koroteev indicated that in the context of Gauge/Bethe
correspondence of Nekrasov and Shatashvili.

Generalization of Givental and Kim result:

Theorem. [P. Koroteev, P. Pushkar, A. Smirnov, A.Z., 2017] Quantum
equivariant K-theory of T ∗F` (F`) is an algebra of functions on the
Lagrangian subvariety in the phase space of trigonometric
Ruijsenaars-Schneider (relativistic Toda) system.

Theorem.i) [P. Koroteev, D. Sage, A.Z., 2018] Quantum equivariant
K-theory of cotangent bundles of partial flags coincides with the one
introduced by R. Rymanyi, V Tarasov, A. Varchenko in 2014.

ii)[P. Koroteev, A.Z., 2018] Vertex functions are the
eigenfunctions of quantum tRS hamiltonians.
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Further directions

I There are quantum Wronskian relations, which Q-operators satisfy
(Q̃Q-system). Geometric meaning?

Recent answer is given in terms of q-opers by P. Koroteev, D.
Sage, A. Zeitlin. Enumerative meaning?

I Enumerative geometry of symplectic resolutions → new kinds of
integrable systems. The simplest example: Hilbert scheme of
points on a plane.

I Elliptic quantum groups, integrable systems and Elliptic
cohomology from 4-dimensional Gauge theories. Some recent
progress by M. Aganagic and A. Okounkov.

I Quantum q-Langlands correspondence:

P. Koroteev, D. Sage, A.Z.: quantum-classical duality as various
coordinates on the space of (SL(N), q)-opers, general case in
progress.

M. Aganagic, E. Frenkel and A. Okounkov: equivalence of
conformal blocks in ADE case.
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Thank you!
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