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Abstract

In this paper, we consider a fractional equation with indefinite nonlinearities

(−4)α/2u = a(x1)f(u)

for 0 < α < 2, where a and f are nondecreasing functions. We prove that there is no
positive bounded solution. In particular, this remarkably improves the result in [CZ]
by extending the range of α from [1, 2) to (0, 2), due to the introduction of new ideas,
which may be applied to solve many other similar problems.

Key words: The fractional Laplacian, indefinite nonlinearities, method of moving
planes, monotonicity, non-existence of positive solutions.

1 Introduction

The fractional Laplacian in Rn is a nonlocal pseudo-differential operator, assuming the form

(−∆)α/2u(x) = Cn,α P.V.

∫
Rn

u(x)− u(z)

|x− z|n+α
dz

= Cn,α lim
ε→0

∫
Rn\Bε(x)

u(x)− u(z)

|x− z|n+α
dz, (1)

∗Partially supported by the Simons Foundation Collaboration Grant for Mathematicians 245486.
†Corresponding author, School of Mathematics, Shanghai Jiao Tong University, congmingli@gmail.com,

partially supported by NSFC 11571233 and NSF DMS-1405175.
‡Partially supported by NSF DMS 1656845

1



where α is any real number between 0 and 2 and P.V. stands for Cauchy principal value. In
order the integral to make sense, we require u ∈ Lα ∩ C1,1

loc , where

Lα = {u ∈ L1
loc(R

n) |
∫
Rn

|u(x)|
1 + |x|n+α

dx <∞}.

We will assume that u satisfies this condition through out the paper.
The non-locality of the fractional Laplacian makes it difficult to investigate. To circum-

vent this difficulty, Caffarelli and Silvestre [CS] introduced the extension method that reduced
this nonlocal problem into a local one in higher dimensions. For a function u : Rn→R, con-
sider the extension U : Rn × [0,∞)→R that satisfies{

div(y1−α∇U) = 0, (x, y) ∈ Rn × [0,∞),
U(x, 0) = u(x).

Then

(−4)α/2u(x) = −Cn,α lim
y→0+

y1−α∂U

∂y
, x ∈ Rn.

This extension method has been applied successfully to study equations involving the
fractional Laplacian, and a series of fruitful results have been obtained (see [BCPS] [CZ] and
the references therein).

In [BCPS], among many interesting results, when the authors considered the properties
of the positive solutions for

(−4)α/2u = up(x), x ∈ Rn, (2)

they first used the above extension method to reduce the nonlocal problem into a local one
for U(x, y) in one higher dimensional half space Rn × [0,∞), then applied the method of
moving planes to show the symmetry of U(x, y) in x, and hence derived the non-existence
in the subcritical case:

Proposition 1 (Brandle-Colorado-Pablo-Sanchez) Let 1 ≤ α < 2. Then the problem div(y1−α∇U) = 0, (x, y) ∈ Rn × [0,∞),

− lim
y→0+

y1−α∂U

∂y
= Up(x, 0), x ∈ Rn (3)

has no positive bounded solution provided p < (n+ α)/(n− α).

Then They took trace to obtain
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Corollary 1 Assume that 1 ≤ α < 2 and 1 < p < n+α
n−α . Then equation (2) possesses no

bounded positive solution.

A similar extension method was adapted in [CZ] to obtain the nonexistence of positive
solutions for an indefinite fractional problem:

Proposition 2 (Chen-Zhu) Let 1 ≤ α < 2 and 1 < p <∞. Then the equation

(−4)α/2u = x1u
p, x ∈ Rn (4)

possesses no positive bounded solution.

The common restriction α ≥ 1 is due to the approach that they need to carry the method
of moving planes on the solutions U of the extended problem

div(y1−α∇U) = 0, (x, y) ∈ Rn × [0,∞). (5)

Due to the presence of the factor y1−α, they have to assume that α ≥ 1, and it seems that
this condition cannot be weakened if one wants to carry out the method of moving planes on
extended equation (5). However, this obstacle does not appear in equation (4), hence one
may expect to be able to remove the condition if working on it directly.

In [CLL], when studying equation (2), the authors applied the method of moving planes
directly to it without making an extension and thus obtain

Proposition 3 Assume that 0 < α < 2 and u is a nonnegative solution of equation (2).
Then

(i) In the critical case p = n+α
n−α , u is radially symmetric and monotone decreasing about

some point.
(ii) In the subcritical case 1 < p < n+α

n−α , u ≡ 0.

This greatly improves the result in Corollary 1 by extending the range of α from [1, 2) to
(0, 2).

In this paper, we will modify the direct method of moving planes introduced in [CLL],
so that it can be applied to equation (4) here without going through extension. There are
several difficulties.

Usually, to carry on the method of moving planes, one needs to assume that the solution
u vanishes at ∞. For equation (2), without assuming lim|x|→∞ u(x) = 0, in the critical and
subcritical cases, one can exploit the Kelvin transform v(x) = 1

|x|n−αu( x
|x|2 ) to derive

(−4)α/2v(x) =
1

|x|γ
vp(x), with lim

|x|→∞ v(x) = 0. (6)
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Here γ ≥ 0 and the coefficient 1
|x|γ possesses the needed monotonicity, so that one can carry

on the method of moving planes on the transformed equation (6).
Now for equation (2), due to the presence of x1, the coefficient of the transformed equation

does not have the required monotonicity, and this renders the Kelvin transform useless.
To assume lim|x|→∞ u(x) = 0 is impractical, because when in the process of applying this

Liouville Theorem (nonexistence of solutions) in the blowing up and re-scaling arguments to
establish a priori estimate, the solution of the limiting equation is known to be only bounded.
Hence it is reasonable to assume that u is bounded when we consider equation (4). Without
the condition lim|x|→∞ u(x) = 0, in order to use the method of moving planes, we introduce
an auxiliary function. As we will explain in the next section, the situation in the fractional
order equation is quite different and more difficult than the one in the integer order equation,
and to overcome these difficulties, we introduce some new ideas when we move the planes
along x1 direction all the way up to ∞. Specifically, we consider a more general equation
than (4),

(−4)α/2u = a(x1)f(u). (7)

The conditions summarized as (H) on the function a and f are assumed as follows:
(H1): a(t) ∈ Cs(R) for some s ∈ (0, 1) and a(t) is nondecreasing in R.
(H2): a(t) ≤ 0 for t ≤ 0 or a(t) = o(|t|−α) for t→ −∞ and a(t) > 0 somewhere for t > 0.
(H3): f is locally Lipschitz and nondecreasing in (0, ∞). Moreover, f(0) = 0 and f > 0 in
(0, ∞).
We provide a basic and self-contained argument to derive the following theorem.

Theorem 1 Let 0 < α < 2. Suppose u is a positive bounded solution of equation (7), then
u is monotone increasing in x1 direction.

Upon the completion of the work, we noticed that the Liouville type theorem for indefinite
fractional problem was considered in [BDGQ]. The authors were able to show the nonexis-
tence of solutions for (4) for the range of 0 < α < 2 by the method of moving planes involving
Green functions. General assumptions as (H) were studied in [BDGQ] as well. However, our
assumption for a(t) seems to be more general. Let us remark on our general assumption on
a(t).

Remark 1 I): The assumption a(t) ≤ 0 for t ≤ 0 is required in [BDGQ]. Based on our
arguments, if a(t) decays faster than |t|−α as t → −∞, our arguments can still carry out.
The interested readers may refer the crucial inequality (20) for the details. For example, the
following case is included our assumption (H),

a(t) =

{ (
(t− 1)−

)−α−ε
, t < 0,(

(t+ 1)+
)α1 , t ≥ 0
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for some ε > 0 and α1 > 0. However, it does not satisfy the assumptions in [BDGQ].
II): Instead of assuming a(0) = 0 and a(t) > 0 in [BDGQ], we only assume a(t) is positive
somewhere for t > 0. So the example a(t) =

(
(t− 1)+

)m
for m > 0 only holds in our case.

III): The local version α = 2 as (7) was considered in [BCN], [Lin], [DL], to just mention a
few. Note that our assumptions on a(t) are even more general than those in the literature.

By comparing the solution u with the first eigenfunction at a unit ball far away from the
origin, we derive a contradiction and hence prove

Theorem 2 Let 0 < α < 2 and h(t) → ∞ as t → ∞. Then equation (7) possesses no
positive bounded solution.

In Section 2, we used a direct method of moving planes to derive the monotonicity of
solutions along x1 direction and prove Theorem 1. In Section 3, we establish the nonexistence
of positive solutions and obtain Theorem 2. The last section is the appendix which provides
the proof for an elementary lemma.

For more related articles, please see [CFY], [CL], [CL1], [CLL1], [CLLg], [CLO], [CLO1],
[FC], [HLZ], [JW], [LZ], [LZ1] and the references therein.

2 Monotonicity of solutions

Consider
(−4)α/2u(x) = x1u

p(x), x ∈ Rn. (8)

We will use the direct method of moving planes to show that every positive solution must
be strictly monotone increasing along x1 direction and thus prove Theorem 1.

Let
Tλ = {x ∈ Rn| x1 = λ, for some λ ∈ R}

be the moving planes,
Σλ = {x ∈ Rn|x1 < λ}

be the region to the left of the plane, and

xλ = (2λ− x1, x2, ..., xn)

be the reflection of x about the plane Tλ.
Assume that u is a solution of pseudo differential equation (8). To compare the values of

u(x) with uλ(x) ≡ u(xλ), we denote

wλ(x) = uλ(x)− u(x).
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From the assumption (H1), it follows that

(−4)α/2wλ(x) =
(
a(xλ1)− a(x1)

)
f(uλ) + a(x1)

(
f(uλ)− f(u)

)
≥ a(x1)f ′(ξλ)wλ(x), (9)

where ξλ(x) is valued between u(x) and uλ(x).
We want to show that

wλ ≥ 0 ∀x ∈ Σλ and for all λ ∈ (−∞,∞).

To this end, usually a contradiction argument is used. Suppose wλ has a negative minimum
in Σλ, then one would derive a contradiction with inequality (9). However, here we only
assume that u is bounded, which cannot prevent the minimum of wλ(x) from leaking to ∞.
To overcome this difficulty, for integer order equations (see [Lin])

−4u = x1u
p(x) x ∈ Rn,

an auxiliary function was introduced:

w̄λ(x) =
wλ(x)

g(x)
with g(x)→∞, as |x|→∞.

Now
lim
|x|→∞ w̄λ(x) = 0

and hence w̄λ can attain its negative minimum in the interior of Σλ. The corresponding left
hand side of (9) becomes

−4wλ = −4w̄λ · g − 25w̄λ · 5g − w̄λ · 4g. (10)

At a minimum of w̄λ, the middle term on the right hand side vanishes since 5w̄λ = 0. This
makes the analysis easier. However, the fractional counter part of (10) is

(−4)α/2wλ = (−4)α/2w̄λ · g − 2C

∫
Rn

(w̄λ(x)− w̄λ(y))(g(x)− g(y))

|x− y|n+α
dy + w̄λ · (−4)α/2g.

At a minimum of w̄λ, the middle term on the right hand side (the integral) neither vanish
nor has a definite sign. This is the main difficulty encountered by the fractional nonlocal
operator, and to circumvent which, we introduce a different auxiliary function and estimate
(−4)α/2wλ in an entirely new approach. We believe that this new idea may be applied to
study other similar problems involving fractional operators.

Step 1.
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As usual, in the first step of the method of moving planes, we show that, for λ close to
negative infinity, we have

wλ(x) ≥ 0, ∀x ∈ Σλ. (11)

To this end, one usually uses a contradiction argument. Suppose there is a negative minimum
xo of wλ, then one would try to show that

(−4)α/2wλ(x
o) < a(xo1)f ′(ξλ(x

o))wλ(x
o)

which is a contradiction to inequality (9). In order wλ to possess such a negative minimum,
one obvious condition to impose on it is lim|x|→∞wλ(x) = 0, which is almost equivalent to
lim|x|→∞ u(x) = 0. However, this condition is too strong in practice. The non-existence
of solutions of (8) is used as an important ingredient in obtaining a priori estimate on the
solutions by applying a blowing-up and re-scaling argument, and the solutions of the limiting
equations are bounded, but may not goes to zero at infinity. Hence it is more reasonable to
assume that the solutions are bounded, hence wλ is bounded.

Different from the logarithmic auxiliary function chosen in [Lin] and [CZ], we choose the
auxiliary function as

g(x) = |x−Re1|σ, w̄λ(x) =
wλ(x)

g(x)
,

where
R = λ+ 1, e1 = (1, 0, · · · , 0),

and σ is a small positive number to be chosen later.
Obviously, w̄λ and wλ have the same sign and

lim
|x|→∞ w̄λ(x) = 0.

Now suppose (11) is violated, then there exists a negative minimum xo of w̄λ, at which
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we compute:

(−4)α/2wλ(x
o) = C PV

∫
Σλ

wλ(x
o)− wλ(y)

|xo − y|n+α
dy + C

∫
Rn\Σλ

wλ(x
o)− wλ(y)

|xo − y|n+α
dy

= C PV

∫
Σλ

{
wλ(x

o)− wλ(y)

|xo − y|n+α
+
wλ(x

o) + wλ(y)

|xo − yλ|n+α

}
dy

= C PV

∫
Σλ

[w̄λ(x
o)− w̄λ(y)]g(y)

(
1

|xo − y|n+α
− 1

|xo − yλ|n+α

)
dy

+ Cw̄λ(x
o)

{∫
Σλ

2g(xo)

|xo − yλ|n+α
dy + PV

∫
Σλ

[g(xo)− g(y)]

(
1

|xo − y|n+α
− 1

|xo − yλ|n+α

)
dy

}
≤ Cw̄λ(x

o)

{∫
Σλ

2g(xo)

|xo − yλ|n+α
dy + PV

∫
Σλ

[g(xo)− g(y)]

(
1

|xo − y|n+α
− 1

|xo − yλ|n+α

)
dy

}
≤ Cw̄λ(x

o)

{∫
Σλ

g(xo)

|xo − yλ|n+α
dy + PV

∫
Σλ

[
g(xo)− g(y)

|xo − y|n+α
+

g(y)

|xo − yλ|n+α

]
dy

}
≡ Cw̄λ(x

o)(I1 + I2). (12)

Here we have used the anti-symmetry property wλ(y
λ) = −wλ(y).

By elementary calculus,

g(xo)

∫ ∞
|xo1−λ|

|Sr|
rn+α

dr ≥ I1 ≥ g(xo)
1

4

∫ ∞
√

2|xo1−λ|

|Sr|
rn+α

dr =
c1g(xo)

|xo1 − λ|α
(13)

with a positive constant c1.
We split I2 into three parts:

I2 = (−4)α/2g(xo)−
∫

Σλ

g(xo)− g(y)

|xo − yλ|n+α
dy +

∫
Σλ

g(yλ)

|xo − yλ|n+α
dy

≥ (−4)α/2g(xo)− I21, (14)

where

I21 =

∫
Σλ

g(xo)− g(y)

|xo − yλ|n+α
dy.

To calculate (−4)α/2g(xo), we simply employ the following

Lemma 2.1 Assume that γ < α.

(−4)α/2(|x− a|γ) = Cγ|x− a|γ−α, (15)
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where Cγ is a constant continuously depending on γ,

Cγ :


> 0, if α− n < γ < 0;
= 0, if γ = 0 or α− n;
< 0, if 0 < γ < α.

The proof is elementary, and will be given in the Appendix.
From this Lemma, we have

(−4)α/2g(xo) =
Cσ

|xo −Re1|α−σ
=

Cσg(xo)

|xo −Re1|α
, (16)

where Cσ can be made as small as we wish for sufficiently small σ.
Evaluate the integral in I21 in two regions

D1 = Σλ ∩ (|y| ≤ K|xo|) and D2 = Σλ ∩ (|y| > K|xo|).

In D1, due to our choice of R = λ+ 1,

|g(xo)− g(y)| ≤ |5g(ξ)||xo − y|
=

σ

|ξ −Re1|1−σ
|xo − y|

≤ C2|5g(xo)||xo − y|
≤ C2σg(xo)

where ξ ∈ Σλ is some point on the line segment from xo to y and C2 is some positive constant
depending only on xo. Consequently,

|
∫
D1

g(xo)− g(y)

|xo − yλ|n+α
dy|

≤ C2σg(xo)|
∫
D1

1

|xo − yλ|n+α
dy|

≤ C2σg(xo)

|xo1 − λ|α
. (17)

On D2, notice that

|g(xo)− g(y)| ≤ |g(xo)|+ |g(y)| ≤ C3|y|σ and |xo − yλ| ≥ |xo − y| ∼ |y|,
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we derive

|
∫
D2

g(xo)− g(y)

|xo − yλ|n+α
dy| ≤ C3

∫
D2

|y|σ

|y|n+α
dy| ≤ C3

(K|xo|)α−σ
. (18)

Combining (17) and (18), we arrive at

|I21| ≤ (C2σ +
C3

Kα−σ )
g(xo)

|xo1 − λ|α
. (19)

Taking into account of (12), (13), (14), and (16), we obtain

(−4)α/2wλ(x
o) ≤ Cw̄λ(x

o)(I1 + I2)

≤ Cw̄λ(x
o)

(
C1 + Cσ − C2σ −

C3

Kα−σ

)
g(xo)

|xo1 − λ|α

≤ Cwλ(x
o)

1

|xo1 − λ|α
. (20)

To derive the last inequality above, we choose K large, then let σ be sufficiently small
(hence Cσ becomes sufficiently small), which implies I1 + I2 > 0 in the mean time. If
a(x1) ≤ 0 for x1 < 0, it is obvious that

(−4)α/2wλ(x
o) < a(xo1)f ′(ξλ)wλ(x

o),

which contradicts (9). If a(x1) = o(|x1|−α) as x1 → −∞, since |x0
1− λ|−α > a(x1)f ′(ξλ) as λ

close to negative infinity, then

Cwλ(x
o)

1

|xo1 − λ|α
< a(xo1)f ′(ξλ)wλ(x

o).

It also provides a contradiction with (9).
Now we have completed Step 1. That is, we have shown that for all λ close to negative

infinity, it holds
wλ(x) ≥ 0, ∀x ∈ Σλ.

Step 2.
The above inequality provides a starting point to move the plane. Now we move plane

Tλ towards the right as long as the inequality holds. We will show that Tλ can be moved all
the way to infinity. More precisely, let

λo = sup{λ | wµ(x) ≥ 0, x ∈ Σµ, µ ≤ λ},

and we will show that λo =∞.
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Suppose the contrary, λo < ∞. Then by the definition of λo, there exists a sequence of
numbers {λk}, with λk ↘ λo, and xk ∈ Σλk , such that

wλk(x
k) = min

Σλk

wλk < 0. (21)

By (9) and (20), there exists a constant co > 0, such that

co
|xk1 − λk|α

≤ a(xk1)f ′(ξλ(x
k)). (22)

Denote
x = (x1, y), xk = (xk1, y

k) and uk(x) = u(x1, y − yk).

Then uk(x) satisfies the same equation as u(x) does. Notice that both uk and (−4)α/2uk
are bounded, by Sobolev embeddings and regularity arguments, for some ε1 > 0, one can
derive a uniform Cα+ε1 estimate on {uk} ( for example, see [CLL1]), and hence concludes
that there is a nonnegative ( 6≡ 0) function u0, such that

uk(x)→u0(x) and (−4)α/2u0 = a(x1)f(u0), x ∈ Rn.

Let
wk,λ(x) = uk(x

λ)− uk(x) = uk,λ(x)− uk(x)

and
w0,λ(x) = u0(xλ)− u0(x) = u0,λ(x)− u0(x).

Then obviously
wk,λ(x)→w0,λ(x), as k→∞,

and due to the bounded-ness of {xk1}, there exists a subsequence (still denoted by {xk1})
which converges to x0

1. Hence

w0,λo(x
0
1, 0) = limwλk(x

k) ≤ 0.

On the other hand, for each x ∈ Σλo , we have

0 ≤ wk,λo(x)→w0,λo(x).

Furthermore, from the equation

(−4)α/2w0,λo(x) = a(xλ01 )f(u0,λo)− a(x1)f(u0), x ∈ Σλo , (23)
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By the strong maximum principle, we must have

w0,λo(x) > 0 for each x ∈ Σλo (24)

or
w0,λo(x) ≡ 0 for each x ∈ Σλo . (25)

If (25) holds, then a(xλ01 ) = a(x1) in Σλo , which contradicts the assumption (H1) and (H2).
Therefore, (24) must be true, which implies that

x0
1 = λo.

It follows that
|xk1 − λk|→0, as k→∞.

This contradicts (22).
Hence, we must have

λo =∞. (26)

It follows that
wλ(x) ≥ 0, ∀x ∈ Σλ, for all λ ∈ (−∞,∞).

Or equivalently, u is monotone increasing in x1 direction.
This completes the proof of Theorem 1.

3 Non-existence of solutions

In the previous section, we have shown that positive solutions of the equation

(−4)α/2u = a(x1)f(u), x ∈ Rn (27)

are monotone increasing along x1 direction. Base on this, we will derive a contradiction, and
hence prove the non-existence.

Proof of Theorem 2. Since a(x1) is positive somewhere and nondecreasing, we may

assume that a(x1) is positive for (R − 2, ∞) for some large R. Let B1(Re1) be the unit
ball centered at (R, 0, · · · , 0). Let φ be the first eigenfunction associated with (−4)α/2 in
B1(Re1): {

(−4)α/2φ(x) = λ1φ(x) x ∈ B1(Re1),
φ(x) = 0 x ∈ BC1 (Re1).
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Let ξ0 = minB1(0) u. Since u is positive, then ξ0 > 0 and m0 = f(ξ0)
supRn u

> 0. since u is

monotone increasing in x1 direction, it follows that

(−4)α/2u(x) ≥ a(R− 1)m0u in B1(Re1)

It is assumed that a(x1)→∞ as x1 →∞, if one chooses R > 0 sufficiently large, we have

(−4)α/2u(x) ≥ λ1u(x), ∀x ∈ B1(Re1). (28)

Let

m = max
B1(Re1)

φ

u
and v(x) = mu(x).

Then obviously, {
(−4)α/2(v(x)− φ(x)) ≥ 0 ∀x ∈ B1(Re1)
v(x)− φ(x) > 0 ∀x ∈ BC1 (Re1).

By the strong maximum principle, we must have

v(x) > φ(x), ∀x ∈ B1(Re1).

This contradicts the definition of v, because at a maximum point xo, we have

v(xo) =
φ(xo)

u(xo)
u(xo) = φ(xo).

Therefore, equation (27) does not possess any positive solution, and hence we complete
the proof of Theorem 2.

4 Appendix

Here we prove Lemma 2.1. Without loss of generality, we may choose a = 0.
In the definition

(−4)α/2(|x|γ) = Cn,αP.V.

∫
Rn

|x|γ − |y|γ

|x− y|n+α
dy,

let y = |x|z, then it becomes

|x|γ−αCn,αP.V.
∫
Rn

1− |z|γ

| x|x| − z|n+α
dz = |x|γ−αCn,αP.V.

∫
Rn

1− |z|γ

|e− z|n+α
dz = |x|γ−αCγ.

13



Here e is any unit vector in Rn.
To see the sign of Cγ, we split the integral into two part, then make change of variable

z = y
|y|2 in the second part to arrive at

Cγ = Cn,αP.V.

{∫
B1(0)

1− |z|γ

|e− z|n+α
dz +

∫
B1(0)

1− |y|−γ

|e− y|n+α|y|n−α
dy

}
= Cn,αP.V.

∫
B1(0)

(1− |z|γ)(1− |z|α−n−γ)
|e− z|n+α

dz.

Now the conclusion of Lemma 2.1 follows immediately.
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