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Abstract. This paper is concerned about maximum principles and radial symmetry for
viscosity solutions of fully nonlinear partial differential equations. We obtain the radial
symmetry and monotonicity properties for nonnegative viscosity solutions of

(0.1) F (D2u) + up = 0 in Rn

under the asymptotic decay rate u = o(|x|− 2
p−1 ) at infinity, where p > 1. As a conse-

quence of our symmetry results, we obtain the nonexistence of any nontrivial and nonneg-
ative solution when F is the Pucci extremal operators. Our symmetry and monotonicity
results also apply to Hamilton-Jacobi-Bellman or Isaccs equations. A new maximum
principle for viscosity solutions to fully nonlinear elliptic equations is established. As a
result, different forms of maximum principles on bounded and unbounded domains are
obtained. Radial symmetry, monotonicity and the corresponding maximum principle for
fully nonlinear elliptic equations in a punctured ball are shown. We also investigate the
radial symmetry for viscosity solutions of fully nonlinear parabolic partial differential
equations.

1. Introduction

In studying partial differential equations, it is often of interest to know if the solutions
are radially symmetric. In this article, we consider radial symmetry results for viscosity
solutions of the fully nonlinear elliptic equations

(1.1) F (D2u) + up = 0 in Rn

and the Dirichlet boundary value problem in a punctured ball

(1.2)

{
F (Du,D2u) + f(u) = 0 in B\{0},
u = 0 on ∂B.

We also obtain the radial symmetry for viscosity solutions of the fully nonlinear parabolic
equation

(1.3)

{
∂tu− F (Du,D2u)− f(u) = 0 in Rn × (0, T ],
u(x, 0) = u0(x) on Rn × {0}.
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We assume in the above that F (Du,D2u) is a continuous function defined on Rn×Sn(R),
where Sn(R) is the space of real, n × n symmetric matrix, f(u) is a locally Lipschitz
continuous function and the initial value u0(x) is continuous. More precisely, we consider
F : Rn × Sn(R) → R satisfies the following structure hypothesis.

(F1 ): There exist γ ≥ 0 and 0 < Λ1 ≤ Λ2 < ∞ such that for all M,N ∈ Sn(R) and
ξ1, ξ2 ∈ Rn,

(1.4) M−
Λ1,Λ2

(M)− γ|ξ1 − ξ2| ≤ F (ξ1,M + N)− F (ξ2, N) ≤M+
Λ1,Λ2

(M) + γ|ξ1 − ξ2|,
where M±

Λ1,Λ2
are the Pucci extremal operators, defined as

(1.5) M+
Λ1,Λ2

(M) = Λ2Σei>0ei + Λ1Σei<0ei,

(1.6) M−
Λ1,Λ2

(M) = Λ1Σei>0ei + Λ2Σei<0ei

where ei, i = 1, · · · , n, is an eigenvalue of M .

For any M = (mij) ∈ Sn(R), let M (k) be the matrix obtained from M by replacing
mik and mkj by −mik and −mkj for i 6= k, j 6= k, respectively. For any vector p, let

p(k) = (p1, · · · , pk−1,−pk, pk+1, · · · , pn).

We assume the following hypothesis for F ,
(F2 ):

(1.7) F (p(k),M (k)) = F (p,M)

for k = 1, · · · , n.

Note that M and M (k) have the same eigenvalues. In this sense,

M±
Λ1,Λ2

(M (k)) = M±
Λ1,Λ2

(M).

Under the hypotheses (F1) and (F2), it is nature to see that the following hypotheses
hold for the F (D2u) in (1.1), that is,

(1.8) M−
Λ1,Λ2

(M) ≤ F (M + N)− F (N) ≤M+
Λ1,Λ2

(M),

(1.9) F (M (k)) = F (M).

Let ξ1 = ξ2, the hypothesis (F1) implies that the uniform ellipticity for the fully nonlinear
equation. Namely, there exist 0 < Λ1 ≤ Λ2 < ∞ such that

Λ1tr(N) ≤ F (ξ1,M + N)− F (ξ1,M) ≤ Λ2tr(N)

for all M,N ∈ Sn(R), N ≥ 0, where tr(N) is the trace of the matrix N . It is easy to see
that the Pucci’s operators (1.5), (1.6) are extremal in the sense that

M+
Λ1,Λ2

(M) = sup
A∈AΛ1,Λ2

tr(AM),

M−
Λ1,Λ2

(M) = inf
A∈AΛ1,Λ2

tr(AM),

where AΛ1,Λ2 denotes the set of all symmetric matrix whose eigenvalues lie in the interval
[Λ1, Λ2].

The moving plane method is a powerful tool to show the radial symmetry of solutions
in partial differential equations. This method goes back to A.D. Alexandroff and then
Serrin [21] applies it to elliptic equations for overdetermined problems. Gidas, Ni and
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Nirenberg [14] further exploit this tool to obtain radial symmetry of positive C2 solutions
of the Dirichlet boundary problem for

4u + f(u) = 0, f ∈ C0,1(R)

in a ball. Notice that the Laplace operator corresponds to Λ1 = Λ2 = 1 in our F (Du,D2u).
In [15], Gidas, Ni and Nirenberg extend their techniques to elliptic equations in Rn. By
assuming that the solutions decay to zero at infinity at a certain rate, the radial symmetry
of positive classical solutions is also derived. Further extensions and simpler proofs are due
to Berestycki and Nirenberg [2] and C. Li [16]. For the detailed account and applications
of the moving plane method for semilinear elliptic equations, we refer to Chen and Li’s
book [3] and references therein.

Radial symmetry results for classical solutions of fully nonlinear elliptic equations are
considered [16] and [17]. Recently, Da Lio and Sirakov [12] studied the radial symmetry
for viscosity solutions of fully nonlinear elliptic equations. The moving plane method is
adapted to work in the setting of viscosity solutions. We would like to mention that, in
these quoted results for radial symmetry in Rn, a supplementary hypothesis that f(u) is
nonincreasing in a right neighborhood of zero is required. In the context of fully nonlinear
equation F (x, u, Du, D2u) = 0, it is equivalent to say that the operator F is proper in a
right neighborhood of zero, i.e. the operator F is nonincreasing in u in the case that u is
small.

We are particularly interested in the nonnegative viscosity solutions of

(1.10) F (D2u) + up = 0 in Rn

for p > 1. Note that the proper assumption (that is, nonincreasing in u) for fully nonlinear
equation in (1.10) is violated since f(u) = up is not nonincreasing any more. So the
previous results no longer hold for (1.10). The typical models of (1.10) are the equations

(1.11) M±
Λ1,Λ2

(D2u) + up = 0 in Rn.

It is well known that the moving plane method and Kelvin transform provide an elegant
way of obtaining the Liouville-type theorems (i.e. the nonexistence of any solution) in
[4]. For (1.11), the critical exponent for nonexistence of any viscosity solution is still an
open problem, since the Kelvin transform does not seem to be available. Curti and Lenoi
[5] consider the nonnegative supersolutions of (1.11), that is,

(1.12) M±
Λ1,Λ2

(M) + up ≤ 0 in Rn.

They show that the inequality (1.12) with M+
Λ1,Λ2

has no non-trivial solution for 1 < p ≤
n∗

n∗−2
, the inequality (1.12) withM−

Λ1,Λ2
has no non-trivial solution provided 1 < p ≤ n∗

n∗−2
,

where the dimension like numbers are defined as

n∗ =
Λ1

Λ2

(n− 1) + 1,

n∗ =
Λ2

Λ1

(n− 1) + 1.

In order to understand the solution structure for (1.11), Felmer and Quass [13] con-
sider (1.11) in the case of radially symmetric solutions. Using phase plane analysis, they
establish that
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Theorem A (i): For (1.11) with the Pucci extremal operator M+
Λ1,Λ2

, there exists no
non-trivial radial solution if 1 < p < p∗+ and n∗ > 2, where

max{ n∗

n∗ − 2
,

n + 2

n− 2
} < p∗+ <

n∗ + 2

n∗ − 2
.

(ii): For (1.11) with the Pucci extremal operator M−
Λ1,Λ2

, there exists no non-trivial
radial solution if 1 < p < p∗−, where

n∗ + 2

n∗ − 2
< p∗− <

n + 2

n− 2
.

An explicit expression for p∗+, p∗− in term of Λ1, Λ2, n are still unknown. In order
to obtain the full range of the exponent p for the Liouville-type theorem in (1.11), it is
interesting to prove that the solutions in (1.11) are radially symmetric.

We first consider the radial symmetry for the fully nonlinear equations with general
operator F (D2u) and show that

Theorem 1. Assume F (D2u) satisfies (1.8) and (1.9). Let n∗ > 2. If u ∈ C(Rn) be
a nonnegative non-trivial solution of (1.1) and

(1.13) u = o(|x|− 2
p−1 ) as |x| → ∞

for p > 1, then u is radially symmetric and strictly decreasing about some point.

In the same spirit of the proof in Theorem 1, our conclusions also hold for general
function f(u), i.e.

(1.14) F (D2u) + f(u) = 0 in Rn.

Corollary 1. Assume that F (D2u) satisfies (1.8) and (1.9), and
(1.15)
f(u)− f(v)

u− v
≤ c(|u|+ |v|)α, for u, v sufficiently small, and some α >

2

n∗ − 2
and c > 0.

Let n∗ > 2 and u be a positive solution of (1.14) with

(1.16) u(x) = O(|x|2−n∗)

at infinity. Then u is radially symmetric and strictly decreasing about some point in Rn.

Once the radial symmetry property of solutions is established, with the help of Theo-
rem A, we immediately have the following corollary. We hope that our symmetry results
shed some light on the complicated problem of Liouville-type theorems in (1.11) for the
full range of the exponent p.

Corollary 2. (i) For (1.11) with the Pucci extremal operator M+
Λ1,Λ2

, there exists
no non-trivial nonnegative solution satisfying (1.13) if 1 < p < p∗+ and n∗ > 2.
(ii) For (1.11) with the Pucci extremal operator M−

Λ1,Λ2
, there exists no non-trivial non-

negative solution satisfying (1.13) if 1 < p < p∗− and n∗ > 2.

In carrying out the moving plane method, the maximum principle plays a crucial
role. In order to adapt the moving plane method to non-proper fully nonlinear equations
(that is, F (x, u, Du, D2u) is not nondecreasing in u), a new maximum principle has to be
established for viscosity solutions.
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In this paper, we will establish a new maximum principle for viscosity solutions to the
equation

M−
Λ1,Λ2

(D2u)− γ|Du|+ c(x)u ≤ 0 in Ω,

where c(x) ∈ L∞(Ω) is not necessarily negative. Similar maximum principle for classical
solutions to semilinear equations was given in [3]. Since we consider the viscosity solutions
here instead of classical solutions in [3], considerably more difficulties have to be taken
care of in our case. Unlike the pointwise argument in [3], we apply the Hopf lemma for
viscosity solutions in those minimum points. More specifically, we have

Theorem 2. Let Ω be a bounded domain. Assume that λ(x), c(x) ∈ L∞(Ω), γ ≥ 0,
and ψ ∈ C2(Ω) ∩ C1(Ω̄) is a positive solution in Ω̄ satisfying

(1.17) M+
Λ1,Λ2

(D2ψ) + λ(x)ψ ≤ 0.

Let u be a viscosity solution of

(1.18)

{ M−
Λ1,Λ2

(D2u)− γ|Du|+ c(x)u ≤ 0 in Ω,
u ≥ 0 on ∂Ω.

If

(1.19) c(x) ≤ λ(x)− γ|Dψ|/ψ,

then u ≥ 0 in Ω.

Note that the function c(x) may not be needed to be negative in order that the
maximum principle holds. We also would like to point out the ψ is a supersolution of the
equation involving M+

Λ1,Λ2
(D2ψ) instead of M−

Λ1,Λ2
(D2ψ). If a specific ψ(x) is chosen, we

can get the explicit control for c(x) in order to obtain the maximum principle for (1.18).
We are also able to extend the maximum principle to unbounded domains. We refer to
Section 3 for more details.

Recently Caffarelli, Li and Nirenberg [9] [10] investigated the following problem

(1.20)

{ 4u + f(u) = 0 in B\{0},
u = 0 in ∂B

in the case that f is locally Lipschitz. They obtained the radial symmetry and mono-
tonicity property of solutions using an idea of Terracini [22]. Their results are also ex-
tended to fully nonlinear equations F (x, u, Du, D2u) = 0 with differentiable components
for u ∈ C2(B̄\{0}). However, this prevents us from applying these results to important
classes of equations such as equations involving Pucci’s extremal operators, Hamilton-
Jacobi-Bellman or Isaacs equations. A maximum principle in a punctured domain is
established in [9] in order to apply the moving plane technique. However, their maximum
principle only holds in sufficiently small domains, since sufficient smallness of the domain
is used in the spirit of Alexandroff-Pucci-Belman maximum principle (see [2]).

In this paper, we consider

M−
Λ1,Λ2

(D2u)− γ|Du|+ c(x)u ≤ 0 in Ω\{0}.
We will obtain a new maximum principle in terms of the assumption of c(x) (see Lemma
10). It is especially true for a sufficiently small domain just as Caffarelli, Li and Nirenberg’s
maximum principle, since the bound of c(x) in Lemma 10 preserves automatically if |x|
is small enough. Our result is not only an extension for viscosity solutions, but also
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an interesting result for semilinear elliptic equations. Furthermore, we obtain the radial
symmetry of solutions in a punctured ball.

Theorem 3. Let u ∈ C(B\{0}) be a positive viscosity solution of (1.2) in the case
that f(u) is locally Lipschitz. Then u is radially symmetric with respect to the origin and
u is strictly decreasing in |x|.

Finally, we consider the radial symmetry of the Cauchy problem for viscosity solutions
of the fully nonlinear parabolic equation (1.3). C. Li [16] obtain the monotonicity and
radial symmetry properties of classic solution u ∈ C2(Rn × (0, T ]) for fully nonlinear
parabolic equations ∂tu − F (x, u, Du, D2u) = 0 with differentiable components. Again
this result does not apply to fully nonlinear parabolic equations involving Pucci extremal
operators, Hamilton-Jacobi-Bellman or Iassac equations. For further extensions about
asymptotic symmetry or radial symmetry of entire solutions, etc. for parabolic problems
on bounded or unbounded domains, we refer to the survey of Poláčik [19].

In this paper, we prove that

Theorem 4. Let u ∈ C(Rn × (0, T ]) be a positive viscosity solution of (1.3). Assume
that

(1.21) |u(x, t)| → 0 uniformly as |x| → ∞,

and

u0(x1, x
′) ≤ u0(y, x′) for x1 ≤ y ≤ −x1, x1 ≤ 0 and x′ = (x2, · · · , xn).

Then u is nondecreasing in x1 and u(x1, x
′, t) ≤ u(−x1, x

′, t) for x1 ≤ 0. Furthermore, if
u0(x) is radially symmetric with respect to the origin and nonincreasing in |x|, then u(x)
is radial symmetry with respect to (0, t) for each fixed t ∈ (0, T ] and nonincreasing in |x|.

The outline of the paper is as follows. In Section 2, we present the basic results for
the definition of viscosity solutions, the strong maximum principle and the maximum
principle in a small domain for viscosity solutions, etc. Section 3 is devoted to providing
the proof of Theorem 1 and Theorem 2. New maximum principles and their extensions are
established. The radial symmetry of solutions in a punctured ball and the corresponding
maximum principle are obtained in Section 4. In Section 5, we prove the radial symmetry
for viscosity solutions of fully nonlinear parabolic equations. Throughout the paper, The
letters C, c denote generic positive constants, which is independent of u and may vary
from line to line.

2. Preliminaries

In this section we collect some basic results which will be applied through the paper
for fully nonlinear partial differential equations. We refer to [6], [7], [8], and references
therein for a detailed account.

Let us recall the notion of viscosity sub and supersolutions of the fully nonlinear elliptic
equation

(2.1) F (Du,D2u) + f(u) = 0 in Ω,

where Ω is an open domain in Rn and F : Rn × Sn(R) → R is a continuous map with
F (p,M) satisfying (F1).



MAXIMUM PRINCIPLES AND SYMMETRY RESULTS 7

Definition: A continuous function u : Ω → R is a viscosity supersolution (subsolution)
of (2.1) in Ω, when the following condition holds: If x0 ∈ Ω, φ ∈ C2(Ω) and u− φ has a
local minimum (maximum) at x0, then

F (Dφ(x0), D
2φ(x0)) + f(u(x0)) ≤ (≥)0.

If u is a viscosity supersolution (subsolution), we say that u verifies

F (Du,D2u) + f(u) ≤ (≥)0

in the viscosity sense. We say that u is a viscosity solution of (2.1) when it simultaneously
is a viscosity subsolution and supersolution.

We also present the notion of viscosity sub and supersolutions of the fully nonlinear
parabolic equation (see e.g. [23])

(2.2) ∂tu− F (Du,D2u)− f(u) = 0 in ΩT := Ω× (0, T ].

Definition: A continuous function u : ΩT → R is a viscosity supersolution (subsolu-
tion) of (2.2) in ΩT , when the following condition holds: If (x0, t0) ∈ ΩT , φ ∈ C2(ΩT ) and
u− φ has a local minimum (maximum) at (x0, t0), then

∂tφ(x0, t0)− F (Dφ(x0, t0), D
2φ(x0, t0))− f(u(x0, t0)) ≥ (≤)0.

We say that u is viscosity solution of (2.2) when it both is a viscosity subsolution and
supersolution.

We state a strong maximum principle and the Hopf lemma for non-proper operators
in fully nonlinear elliptic equations (see e.g. [1]).

Lemma 1. Let Ω ⊂ Rn be a smooth domain and let b(x), c(x) ∈ L∞(Ω). Suppose
u ∈ C(Ω̄) is a viscosity solution of

{ M−
Λ1,Λ2

(D2u)− b(x)|Du|+ c(x)u ≤ 0 in Ω,
u ≥ 0 in Ω.

Then either u ≡ 0 in Ω or u > 0 in Ω. Moreover, at any point x0 ∈ ∂Ω where u(x0) = 0,
we have

lim inf
t→0

u(x0 + tν)− u(x0)

t
< 0,

where ν ∈ Rn\{0} is such that ν · n(x0) > 0 and n(x0) denotes the exterior normal to ∂Ω
at x0.

It is straightforward to deduce the strong maximum principle for proper operators in
fully nonlinear elliptic equations from the Hopf Lemma.

Lemma 2. Let Ω ∈ Rn be an open set and let u ∈ C(Ω) be a viscosity solution of

M−
Λ1,Λ2

(D2u)− b(x)|Du|+ c(x)u ≤ 0

with b(x), c(x) ∈ L∞(Ω) and c(x) ≤ 0. Suppose that u achieves a non-positive minimum
in Ω. Then u is a constant.

We shall make use of the following maximum principle which does not depend on the
sign of c(x), but instead, on the measure of the domain Ω (see e.g. [12]).
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Lemma 3. Consider a bounded domain Ω and assume that |c(x)| < m in Ω and γ ≥ 0.
Let u ∈ C(Ω̄) be a viscosity solution of

{ M−
Λ1,Λ2

(D2u)− γ|Du|+ c(x)u ≤ 0 in Ω,
u ≥ 0 on ∂Ω.

Then there exists a constant δ = δ(Λ1, Λ2, γ, n, m, diam(Ω)) such that we have u ≥ 0 in
Ω provided |Ω| < δ.

The following result is concerned about the regularity of viscosity solutions in [6].

Lemma 4. Let Ω ⊂ Rn be a bounded domain and assume that (F1) is satisfied and f
is locally Lipschitz. Let u ∈ C(Ω̄) be a viscosity solution of

F (Du,D2u) + f(u) = 0 in Ω.

Then u is in C1,α
loc (Ω) for some α ∈ (0, 1).

In the process of employing the moving plane method, we need to compare u at x
with its value at its reflection point of x. The next lemma shows that the difference of
a supersolution and a subsolution of the fully nonlinear equation is still a supersolution.
Unlike the case of the classical solutions of fully nonlinear equations F (x, u, Du, D2u) = 0
with differentiable components, the difficulty here is the lack of regularity of u. The
following result is first showed in [12]. We also refer the reader to [11] and [18] for
related results. In Section 4, we will derive similar results for viscosity solutions of fully
nonlinear parabolic equations.

Lemma 5. Assume that F (Du,D2u) satisfies (F1) and f is locally Lipschitz. Let
u1 ∈ C(Ω̄) and u2 ∈ C(Ω̄) be respectively a viscosity subsolution and supersolution of

F (Du,D2u) + f(u) = 0 in Ω.

Then the function v = u2 − u1 is a viscosity solution of

M−
Λ1,Λ2

(D2v)− γ|Dv|+ c(x)v(x) ≤ 0,

where

(2.3) c(x) =





f(u2(x))−f(u1(x))
u2(x)−u1(x)

, if u2(x) 6= u1(x),

0, otherwise.

In the proof of Lemma 5 in [12], an equivalent definition of viscosity solutions in
terms of semijets is used (see [8]). In order to obtain the parabolic version of Lemma 5,
we denote by P2,+

Ω ,P2,−
Ω the parabolic semijets.

Definition:
(2.4)
P2,+

Ω u(z, s) = {(a, p, X) ∈ R× Rn × Sn(R) : u(x, t) ≤ u(z, s) + a(t− s)+ < p, x− z > +

1
2

< X(x− z), x− z > +o(|t− s|+ |x− z|2) as ΩT 3 (x, t) → (z, s)}.
While we define P 2,−

Ω (u) := −P 2,+
Ω (−u).
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3. Symmetry of Viscosity Solutions in Rn

In this section, we will obtain the radial symmetry of nonnegative solution in (1.1).
We first present a technical lemma about the eigenvalue of a radial function. It could be
verified by a direct calculation.

Lemma 6. Let ψ : (0, +∞) → R be a C2 radial function. For ∀ x ∈ Rn\{0}, the

eigenvalues of D2ψ(|x|) are ψ′′(|x|), which is simple and ψ′(|x|)
|x| , which has multiplicity

(n− 1).

Based on the above conclusion, we may select specific functions. For instance, let
ψ = |x|−q and 0 < q < n∗ − 2. Recall that n∗ = Λ1

Λ2
(n − 1) + 1. The eigenvalues are

q(q + 1)|x|−q−2 and −q|x|−q−2. From the above lemma, for x ∈ Rn\{0},
M+

Λ1,Λ2
(D2ψ)(x) = Λ2q(q + 1)|x|−q−2 − Λ1(n− 1)q|x|−q−2

= q(Λ2(q+1)−Λ1(n−1))
|x|2 ψ(x).

Notice that 0 < q < n∗ − 2 implies that

q(Λ2(q + 1)− Λ1(n− 1)) < 0.

We shall make use of a simple lemma, which enables us to consider the product of a
viscosity solution and an auxiliary function. The argument is in the spirit of Lemma 2.1
in [12]. However, the idea behind it is different. In their lemma, u(x) is assumed to be
nonnegative. We do not impose this assumption. In other words, we specifically focus on
the points where u(x) is negative.

Lemma 7. Let u ∈ C(Ω) satisfy

(3.1) M−
Λ1,Λ2

(D2u)− b(x)|Du|+ c(x)u ≤ 0

where b(x), c(x) ∈ L∞(Ω). Suppose ψ ∈ C2(Ω) ∩ C1(Ω̄) is strictly positive in Ω̄. Assume
u(x0) < 0. Then ū := u/ψ satisfies

(3.2) M−
Λ1,Λ2

(D2ū)− b̄(x)|Dū|+ c̄(x)ū ≤ 0

at x0, where

b̄(x) =
2
√

nΛ2|Dψ|
ψ

+ |b|
and

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ) + |b||Dψ|

ψ
.

Proof. Let φ(x) ∈ C2(Ω) be the test function that toughes ū from below at x0, that
is φ(x0) = ū(x0) and ū(x) ≥ φ(x) in Ω. Then u(x0) = φ(x0)ψ(x0) and u(x) ≥ φ(x)ψ(x)
in Ω, which indicates that φ(x)ψ(x) toughes u from below. Simple calculations show that

D(φψ) = Dφ · ψ + Dψ · φ,

D2(φψ) = φD2ψ + 2Dφ⊗Dψ + D2φψ,

where ⊗ denotes the symmetric tensor product with p ⊗ q = 1
2
(piqj + pjqi)i,j. By the

properties of the Pucci extremal operators, we have

M−
Λ1,Λ2

(M + N) ≥M−
Λ1,Λ2

(M) +M−
Λ1,Λ2

(N),
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M−
Λ1,Λ2

(aM) = aM+
Λ1,Λ2

(M)

for a ≤ 0. We also note that

tr(A(p⊗ q)) ≤ |A||p⊗ q| ≤ √
nΛ2|p||q|,

where A is a matrix whose eigenvalues lie in [Λ1, Λ2] and |A| :=
√

tr(AT A). Since φψ is
a test function for u and φ(x0) = ū(x0) < 0, taking into account the above properties, we
get

0 ≥ c(x)φψ − b|D(φψ)|+M−
Λ1,Λ2

(D2(ψφ))

≥ c(x)φψ + |b||Dψ|φ− |b||Dφ|ψ + ψM−
Λ1,Λ2

(D2φ)− 2
√

nΛ2|Dφ||Dψ|

+φM+
Λ1,Λ2

(D2ψ)

≥ (c(x)ψ +M+
Λ1,Λ2

(D2ψ) + |b||Dψ|)φ− (2
√

nΛ2|Dψ|+ |b|ψ)|Dφ|+ ψM−
Λ1,Λ2

(D2φ)

at x0. Dividing both sides by ψ, we obtain

M−
Λ1,Λ2

(D2φ)(x0)− b̄(x0)|Dφ|(x0) + c̄(x0)φ(x0) ≤ 0,

where b̄(x), c̄(x) are in the statement of the lemma.
¤

Using the above lemma and the strong maximum principle in Lemma 2, we are able
to consider the maximum principle in terms of c(x) for non-proper operators in fully
nonlinear elliptic equation.

Proof of Theorem 2. We prove it by contradiction argument. Suppose that u(x) <
0 somewhere in Ω. Let

ū(x) =
u(x)

ψ(x)
.

Then ū(x) < 0 somewhere in Ω. Since u(x) ≥ 0 on ∂Ω, we may assume that ū(x∗) =
infΩ ū(x) < 0, where x∗ ∈ Ω. By the continuity of ū(x), we can find a connected neigh-
borhood Ω′ containing x∗ such that ū(x) < 0 in Ω′ and ū(x) 6≡ u(x∗) in Ω′. Otherwise,
u(x) ≡ u(x∗) in Ω, it is obviously a contradiction. Thanks to Lemma 7 with b(x) replaced
by γ, ū satisfies

(3.3) M−
Λ1,Λ2

(D2ū)− b̄(x)|Dū|+ c̄(x)ū ≤ 0 in Ω′.

Recall that

b̄(x) =
2
√

nΛ2|Dψ|
ψ

+ γ ∈ L∞(Ω′)

and

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ) + γ|Dψ|

ψ
∈ L∞(Ω′).

By the assumptions (1.19) and (1.17),

c(x) +
M+

Λ1,Λ2
(D2ψ) + γ|Dψ|

ψ
≤ 0.

Thanks to the strong maximum principle in Lemma 2, ū(x) ≡ ū(x∗) in Ω′. It contradicts
our assumption. This contradiction leads to the proof of the lemma. ¤
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Remark 1. 1. From the proof, we can see that the same reasoning follows when the
condition (1.17) and (1.19) hold where u is negative.

2. If c(x), λ(x) are continuous, we only need c(x∗) < λ(x∗)− γ|Dψ|/ψ(x∗), where x∗

is the point where u reaches minimum.

In the spirit of the above argument, we extend the corresponding maximum principle
to unbounded domains. We need to guarantee that the minimum is only achieved in the
interior of the domain.

Lemma 8. Let Ω be an unbounded domain. If u, ψ satisfy the same conditions as that
in Theorem 2 and assume that

(3.4) lim inf
|x|→∞

u(x)

ψ(x)
≥ 0,

then u ≥ 0 in Ω.

Proof. Note that the assumption (3.4) implies that the minimum of u/ψ will not go
to infinity. Then the minimum of u/ψ lies only in the interior of Ω. Applying the same
argument as in the proof of Theorem 2, the conclusion follows. ¤

If some particular ψ(x) is given, then c(x) could be controlled explicitly, which is es-
pecially useful in applying the maximum principle. We call the following useful maximum
principle as “Decay at infinity”.

Corollary 3. (Decay at infinity) Assume that there exists R > 0 such that

(3.5) c(x) ≤ −q(Λ2(q + 1)− Λ1(n− 1))

|x|2 − γq

|x| for |x| > R

and

(3.6) lim inf
|x|→∞

u(x)|x|q ≥ 0.

Let Ω be a region in Bc
R(0) = Rn\BR(0). If u satisfies (1.18) in Ω, then

u(x) ≥ 0 for all x ∈ Ω.

Proof. We consider the specific function ψ(x) = |x|−q, As we know,

M+
Λ1,Λ2

(D2ψ)(x)− q(Λ2(q + 1)− Λ1(n− 1))

|x|2 ψ(x) = 0.

Applying Lemma 8, we conclude the proof. ¤
Remark 2. i)It is similar to Remark 1, the conclusion holds when (3.5) is true at

points where u is negative.

ii) In the case of γ = 0, c(x) ≤ −q(Λ2(q+1)−Λ1(n−1))
|x|2 . Notice that c(x) may not be needed

to be negative in order that the maximum principle holds.

In the rest of this section, we are going to adapt the moving plane technique in the
viscosity solution setting to prove Theorem 1. We refer to the book [3] for more account
of the moving plane method in semilinear elliptic equations. Before we carry out the
moving plane method, we introduce several necessary notations. Set

Σλ = {x = (x1, · · · , xn) ∈ Rn|x1 < λ}
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and Tλ = ∂Σλ. Define xλ be the reflection of x with respect to Tλ, i.e. xλ = (2λ −
x1, x2, · · · , xn). Let

uλ(x) = u(xλ)

and
vλ(x) = uλ(x)− u(x).

The moving plane method to obtain the radial symmetry consists of two steps. In the
first step, we show that the plane can move, that is, we will deduce that, for sufficiently
negative λ,

(3.7) vλ(x) ≥ 0, ∀x ∈ Σλ,

where we are going to use the corollary of decay at infinity. In the second step, we will
move the plane Tλ to the right as long as (3.7) holds. The plane will stop at some critical
position, say at λ = λ0. We will verify that

(3.8) vλ0 ≡ 0, ∀x ∈ Σλ0 .

These two steps imply that u(x) is symmetric and monotone decreasing about the plane
Tλ0 . Since the equation (1.1) is invariant under rotation, we can further infer that u(x)
must be radially symmetric with respect to some point.

Proof of Theorem 1: We derive the proof in two steps.
Step 1 : By the hypothesis (1.9), uλ satisfies the same equation as u does. Thanks to

Lemma 5 for the case γ = 0,

(3.9) M−
Λ1,Λ2

(D2vλ) + pψp−1
λ (x)vλ(x) ≤ 0,

where ψλ(x) is between uλ(x) and u(x). In order to apply the corollary of decay at infinity,
by (ii) in Remark 2, it is sufficient to verify that

(3.10) ψp−1
λ (x) ≤ C

|x|2
and

(3.11) lim inf
|x|→∞

vλ(x)|x|q ≥ 0.

For (3.10), to be more precise, we only need to show that (3.10) holds at the points x̃
where vλ is negative (see Remark 2). At those points,

uλ(x̃) < u(x̃).

Then
0 ≤ uλ(x̃) ≤ ψλ(x̃) ≤ u(x̃).

By the decay assumption (1.13), we derive that

c(x̃) = pψp−1
λ (x̃) ≤ o(|x̃|−2) ≤ C|x̃|−2,

that is, (3.10) is satisfied. Note that the fact λ is sufficiently close to negative infinity is
applied. By the decay assumption (1.13) again, for any small ε,

lim inf
|x|→∞

vλ(x)|x|q ≥ lim inf
|x|→∞

−u(x)|x|q ≥ lim inf
|x|→∞

−ε

|x| 2
p−1

−q
.

If 2
p−1

− q > 0, then (3.11) is fulfilled. Hence we fixed 0 < q < min{ 2
p−1

, (n∗ − 2)}.
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Step 2 : We continue to move the plane Tλ to the right as long as (3.7) holds. Define

λ0 = sup{λ |vµ(x) ≥ 0 in Σµ for every µ ≤ λ}.
Since u(x) → 0 as |x| → ∞, we infer that λ0 < ∞. If λ0 > 0, by the translation invariance
of the equation, we may do a translation to let the critical position be negative. If λ0 = 0,
we move the plane from the positive infinity to the left. If λ0 = 0 again, we obtain the
symmetry of the solution at x1 = 0. In all the cases, we may consider Σλ0 with λ0 < 0,
which avoids the singularity of ψ(x) = |x|−q at the origin. Our goal is to show that
vλ0(x) ≡ 0 in Σλ0 . Otherwise, by the strong maximum principle in Lemma 1, we have
vλ0 > 0 in Σλ0 . If this is the case, we will show that the plane can continue to move to
the right a little bit more, that is, there exists a ε0 such that, for all 0 < ε < ε0, we have

(3.12) vλ0+ε ≥ 0, ∀x ∈ Σλ0+ε.

It contradicts the definition of λ0. Therefore, (3.8) must be true. Set

v̄λ(x) :=
vλ(x)

ψ(x)
.

Suppose that (3.12) does not hold, then there exist a sequence of εi such that εi → 0 and
a sequence of {xi}, where {xi} is the minimum point such that

v̄λ(x) = lim inf
Σλ0+εi

vλ(x).

We claim that there exists a R̄ such that |xi| < R̄ for all i. For a clear presentation,
this claim is verified in Lemma 9 below. By the boundedness of {xi}, there exists a
subsequence of {xi} converging to some point x0 ∈ Σλ0 . Since

v̄λ0(x
0) = lim

i→∞
v̄λ0+εi

(xi) ≤ 0

and v̄λ0(x) > 0 for x ∈ Σλ0 , we obtain that x0 ∈ Tλ0 and v̄λ0(x
0) = 0. By the regularity

of fully nonlinear equations in Lemma 4 and the fact that ψ(x) ∈ C2(Σλ0), we know that
at least v̄λ(x) ∈ C1(Σλ0). Consequently,

∇v̄λ0(x
0) = lim

i→∞
∇v̄λ0+εi

(xi) = 0.

It follows that

(3.13) ∇vλ0(x
0) = ∇v̄λ0(x

0)ψ(x0) + v̄λ0(x
0)∇ψ(x0) = 0.

Since vλ0(x
0) = 0 and vλ0(x) > 0 for x ∈ Σλ0 , thanks to the Hopf lemma (i.e. Lemma 1)

, we readily get that
∂vλ0

∂n
(x0) < 0,

where n is the outward normal at Tλ0 . It is a contradiction to (3.13). In the end, we
conclude that uλ0(x) ≡ u(x), i.e. (3.8) holds.

¤

The following lemma verifies the claim in the proof of Theorem 1.

Lemma 9. There exists a R̄ (independent of λ) such that |x0| < R̄, where x0 is the
point where v̄λ(x) achieves the minimum and v̄λ(x0) < 0.
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Proof. If |x0| is sufficiently large, by the decay rate of u,

(3.14) c(x0) = pψp−1
λ (x0) < C|x0|−2 = −M

+
Λ1,Λ2

(D2ψ)(x0)

ψ(x0)
,

where C = −q(Λ2(q +1)−Λ1(n−1)) > 0 and ψ(x) = |x|−q. It follows from the argument
of Theorem 2 in the case of γ = 0 that

M−
Λ1,Λ2

(D2v̄λ)− b̄(x)|Dv̄λ|+ c̄(x)v̄λ ≤ 0 in Σλ.

Here

b̄(x) =
2
√

nΛ2|Dψ|
ψ

and

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ)

ψ
.

From (3.14), we see that there exists a neighborhood Ω′ of x0 such that c̄(x) < 0 in Ω′.
The strong maximum principle in Lemma 2 further implies that

(3.15) v̄λ(x) ≡ v̄λ(x0) < 0 for |x| > |x0|.
On the other hand,

v̄λ(x) = [o(|xλ|−
2

p−1 )− o(|x|− 2
p−1 )|x|q] → 0

as |x| → ∞, which contradicts (3.15). Hence the lemma is completed. ¤
Proof of Corollary 1: Adopting the same notations in the proof of Theorem 1,

for the general function f(u), we have

(3.16) M−
Λ1,Λ2

(D2vλ) + cλ(x)vλ(x) ≤ 0,

where

(3.17) cλ(x) =





f(uλ(x))−f(u(x))
uλ(x)−u(x)

, if uλ(x) 6= u(x),

0, otherwise.

As argued in Theorem 1, we should verify that

(3.18) cλ(x) ≤ C

|x|2
and

(3.19) lim inf
|x|→∞

vλ(x)|x|q ≥ 0.

We only need to focus on the points x̃ where uλ(x̃) < u(x̃) for (3.18). From the assumption
(1.15), if x̃ is large enough,

(3.20) cλ(x̃) ≤ c(|uλ|+ |u|)α(x̃) = O(|x̃|(2−n∗)α) ≤ C

|x̃|2
for α > 2

n∗−2
. Recall that n∗ = Λ1

Λ2
(n− 1) + 1. Since u(x) is positive, then

vλ(x)|x|q > −u(x)|x|q.
If u(x) = O(|x|2−n∗), then

lim inf
|x|→∞

vλ(x)|x|q ≥ lim inf
|x|→∞

−u(x)|x|q = 0
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for 0 < q < n∗ − 2. Hence (3.18) and (3.19) are satisfied. The rest of proof follows from
the same argument in Theorem 1. ¤

4. Symmetry of Viscosity Solutions in a Punctured Ball

In this section, we consider the radial symmetry of viscosity solutions in a punctured
ball. Due to the singularity of the point, the corresponding maximum principle shall
be established. Instead of only considering sufficiently small domains, our result is valid
under the appropriate upper bound of c(x). The result also holds if c(x) is bounded and
the domain is appropriately small. Thanks to Lemma 5, we only consider the following
equation.

(4.1) M−
Λ1,Λ2

(D2u)− γ|Du|+ c(x)u ≤ 0 in Ω\{0}.
Lemma 10. Let Ω be a connected and bounded domain in Rn and u be the viscosity

solution of (4.1). Assume that c(x) ∈ L∞(Ω\{0}), and
(4.2)



c(x) ≤ q(Λ1(n−1)−Λ2(q+1))
|x|2 − γq

|x| with 0 < q < n∗ − 2 if n∗ > 2,

or

c(x) ≤ Λ2/4(− ln |x|)−2|x|−2 − γ/2(− ln |x|)−1|x|−1 with |x| ≤ 1 in Ω if n∗ = 2.

Moreover, u is bounded from below and u ≥ 0 on ∂Ω. Then u ≥ 0 in Ω\{0}.
Proof. Our proof is based on the idea in Theorem 2. Recall again that n∗ = Λ1

Λ2
(n−

1)+1. If n∗ > 2, let ψ(x) = |x|−q. If n∗ = 2, we select ψ(x) = (− ln |x|)a, where 0 < a < 1.
Set

ū(x) :=
u(x)

ψ(x)
.

Since u is bounded from below in Ω\{0} and ψ(x) →∞ as |x| → 0, then

lim inf
|x|→0

ū(x) ≥ 0.

It is easy to know that ū(x) ≥ 0 on ∂Ω. Suppose u(x) < 0 somewhere in Ω\{0}, then
ū(x) < 0 somewhere in Ω\{0}. Hence infΩ\{0} ū(x) is achieved at some point x0 ∈ Ω\{0}.
Therefore, we can find a neighborhood Ω′ of x0 such that ū(x) < 0 and ū(x) 6≡ ū(x0) in
Ω′. Otherwise, ū(x) ≡ ū(x0) in Ω′, which is obviously impossible. Recall in Theorem 2
that,

(4.3) M−
Λ1,Λ2

(D2ū)− b̄(x)|Dū|+ c̄(x)ū ≤ 0 in Ω′,

where

c̄(x) = c(x) +
M+

Λ1,Λ2
(D2ψ) + γ|Dψ|

ψ
.

In order to apply the strong maximum principle, we need c̄(x) ≤ 0, i.e.

(4.4) c(x) ≤ −M
+
Λ1,Λ2

(D2ψ) + γ|Dψ|
ψ

.

If n∗ > 2, then ψ(x) = |x|−q,

M+
Λ1,Λ2

(D2ψ) + γ|Dψ|
ψ

=
q(Λ2(q + 1)− Λ1(n− 1))

|x|2 +
γq

|x| .
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Let

c(x) ≤ q(Λ1(n− 1)− Λ2(q + 1))

|x|2 − γq

|x| .
Then (4.4) is satisfied.

If n∗ = 2, then ψ(x) = (− ln |x|)a,

M+
Λ1,Λ2

(D2ψ) + γ|Dψ|
ψ

= Λ2(a− 1)a(− ln |x|)−2|x|−2 + γa(− ln |x|)−1|x|−1.

Hence we may assume that

(4.5) c(x) ≤ Λ2/4(− ln |x|)−2|x|−2 − γ/2(− ln |x|)−1|x|−1,

which implies that (4.4) holds for a = 1/2. If c(x) is in the above range, by the strong
maximum principle in Lemma 2, we readily deduce that u(x) ≡ u(x0) in Ω′. We then
arrive at a contradiction. The proof of the lemma follows. ¤

Remark 3. The assumption (4.2) is clearly satisfied when |c(x)| is bounded and Ω is
sufficiently small.

With the above maximum principle in hand, we are able to prove the radial symmetry
of viscosity solutions. We adapt the argument of [10] in our setting. Let the domain
O be bounded and convex in direction of x1, symmetric with respect to the hyperplane
{x1 = 0}. We prove the radial symmetry and monotonicity properties in O. Theorem 3 is
an immediate consequence of Theorem 5 below. Let us first introduce several notations.
Set

Σλ := {x = (x1, · · · , xn) ∈ O|x1 < λ}
and Tλ = {x ∈ O|x1 = λ}. Define xλ be the reflection of x with respect to Tλ. Let

uλ(x) = u(xλ)

and
vλ(x) = uλ(x)− u(x).

Theorem 5. Let u ∈ C(Ō\{0}) be a positive viscosity solution of

(4.6) F (Du,D2u) + f(u) = 0 in Ō\{0}.
Then u is symmetric in x1, that is, u(x1, x2, · · · , xn) = u(−x1, x2, · · · , xn) for all x ∈
O\{0}. In addition, u is strictly increasing in x1 < 0.

Proof of Theorem 5. Without loss of generality, we may assume that infO x1 =
−1. We carry out the moving plane method in two steps.

Step 1 : We show that the plane can move, i.e. there exists −1 < λ0 < −1
2

such that

vλ ≥ 0 in Σλ

for −1 < λ < λ0. By (F2), uλ satisfies the same equation as u does. Thanks to Lemma
5, we know that vλ satisfies

M−
Λ1,Λ2

(D2vλ)− γ|Dvλ|+ cλ(x)vλ ≤ 0 in O\{0},
where

(4.7) cλ(x) =





f(uλ(x))−f(u(x))
uλ(x)−u(x)

, if uλ(x) 6= u(x),

0, otherwise.
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Since f is locally Lipschitz in (0,∞), then |cλ(x)| < C in O for some C > 0. It is clear
that vλ(x) ≥ 0 in ∂Σλ. If λ is sufficient close to −1, then Σλ is small enough. By the
maximum principle for small domains in Lemma 3, we readily deduce that vλ ≥ 0 in Σλ.
Step 1 is then completed.

Define

λ0 = sup{λ| − 1 < µ < 0, vµ ≥ 0 in Σµ\{0µ} for µ ≤ λ < 0}.
Step 2 : We are going to show that λ0 = 0. If it is true, we move the plane from the

position where supO x1 = 1 to the left. By the symmetry of O, the plane will reach λ0 = 0
again. Hence the symmetry of viscosity solutions is obtained. We divide the proof into
three cases and show that the following cases are impossible to occur.

Case 1 : −1 < λ0 < −1
2
.

If this is the case, we are going to show that the plane can still be moved a little bit
more to the right. By the strong maximum principle in Lemma 1, we have vλ0(x) > 0 in
Σλ0 . Set λ = λ0 + ε for sufficiently small ε. Let K be a compact subset in Σλ0 such that
|Σλ0\K| < δ/2. Recall that δ is the measure of O for which the maximum principle for
small domains in Lemma 3 holds. By the continuity of vλ, there exists some r > 0 such
that vλ > r in K. In the remaining Σλ\K, we can check that vλ satisfies

{ M−
Λ1,Λ2

(D2vλ)− γ|Dvλ|+ cλ(x)vλ ≤ 0 in Σλ\K,
vλ ≥ 0 on ∂(Σλ\K).

By the maximum principle for small domains again, vλ ≥ 0 in Σλ\K by selecting suffi-
ciently small ε. Together with the fact that vλ ≥ r in K, we infer that vλ ≥ 0 in Σλ. It
contradicts the definition of λ0.

Case 2 : λ0 = −1
2
.

We also argue that the plane can be moved further, which indicates that λ0 = −1
2

is

impossible. Since O is symmetric with respect to the hyperplane x1 = 0, then 0−1/2 =
(−1, 0, · · · , 0). We select a compact set K in Σ−1/2 such that |Σλ0\K| < δ/2. By the
positivity and continuity of v−1/2, there exists some r > 0 such that v−1/2 > r in K.
Without loss of generality, we may assume that dist(K, Σ−1/2) ≥ r′ for some r′ > 0. We
consider a small ball Br′/2(e) centered at e = (−1, 0, · · · , 0) with radius r′/2. From the
positivity of v−1/2 again, we have, making r smaller if necessary,

v−1/2 > r/2 in ∂Br′/2(e) ∩ Ō.

Let λ = −1/2 + ε for small ε > 0. By the continuity of vλ, we get

vλ > r/4 in (∂Br′/2(e) ∩ Ō) ∪K.

For such small ε, 0−1/2+ε lies in Br′/2(e) ∩ Ō. We also know that vλ ≥ 0 on Br′/2(e) ∩ ∂O.
Therefore,

vλ ≥ 0 in ∂(Br′/2(e) ∩O).

Choosing r′ so small that Lemma 10 is valid, then

vλ ≥ 0 in Br′/2(e) ∩O.

We consider the remaining set Σλ\(K ∪ Br′/2(e)). we can verify that vλ satisfies
{ M−

Λ1,Λ2
(D2vλ)− γ|Dvλ|+ cλ(x)vλ ≤ 0 in Σλ\(K ∪ Br′/2(e)),

vλ ≥ 0 on ∂(Σλ\(K ∪ Br′/2(e))).
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Therefore, for sufficiently small ε, the maximum principle of small domains implies that
vλ ≥ 0 in Σλ\(K ∪ Br′/2). In conclusion, vλ ≥ 0 for λ = −1/2 + ε. We arrive at a
contradiction.

Case 3 : −1/2 < λ0 < 0.
We show that this critical position is also impossible. For the singular point 0λ0 , we

choose a ball Br′/2(0
λ0) centered at 0λ0 with radius r′/2. Let λ = λ0 + ε. For ε > 0 small

enough, 0λ still lies in Br′/2(0
λ0). By the continuity and positivity of vλ0 , there exists

some r > 0 such that vλ ≥ r on ∂Br′/2(0
λ0). Applying Lemma 10 for small value of r′/2,

we infer that vλ ≥ 0 in Br′/2(0
λ0). Similar argument as Case 1 and Case 2 could show

that vλ ≥ 0 in Σλ\{0} for λ = λ0 + ε.
¤

5. The Radial Symmetry for Viscosity Solutions of Fully Nonlinear
Parabolic Equations

We consider the radial symmetry of fully nonlinear parabolic equation in this section.
we first show that the difference of supersolution and subsolution of the parabolic equation
satisfies an inequality involving Pucci extremal operator, which enables us to compare the
value of u at x and its value at the reflection of x. The following lemma is non trivial
since u is not of class C2. The proof of the lemma below is inspired by the work in [12]
and [18].

Lemma 11. Let u1, u2 be a continuous subsolution and supersolution respectively in
Rn × (0, T ] of

(5.1) ∂tu− F (Du,D2u)− f(u) = 0.

Then w̃ = u2 − u1 is a viscosity supersolution of

(5.2) −∂tw̃ +M−
Λ1,Λ2

(D2w̃)− γ|∇w̃|+ c(x, t)w̃ ≤ 0,

where

(5.3) c(x, t) =





f(u1(x,t))−f(u2(x,t))
u1(x,t)−u2(x,t)

, if u1(x, t) 6= u2(x, t),

0, otherwise.

Proof. We consider w = u1 − u2 = w̃, then apply the property of M−
Λ1,Λ2

(D2w) =

−M+
Λ1,Λ2

(D2w̃) to verify (5.2). Let ϕ ∈ C2 be a test function such that w−ϕ has a local

maximum at (x̃, t̃). Then there exists r > 0 such that, for all (x, t) ∈ Br(x̃)× (t̃− r, t̃] ⊂
Rn × (0, T ], (w − ϕ)(x, t) < (w − ϕ)(x̃, t̃). Define

Φε(x, y, t) = u1(x, t)− u2(y, t)− ϕ(x, t)− |x− y|2
ε2

.

Let (xε, yε, tε) be the maximum point of Φε(x, y, t) in Br(x̃)×Br(x̃)× (t̃− r, t̃]. Standard
argument shows that

(5.4)





(i) : (xε, yε) → (x̃, x̃),

(ii) : |xε−yε|2
ε2

→ 0
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as ε → 0. Let θ = Br(x̃) and

ψε(x, y, t) = ϕ(x, t) +
|xε − yε|2

ε2
.

The argument of Theorem 8.3 in [8] indicates that, for all α > 0, there exist X,Y ∈ Sn(Rn)
such that

(5.5)





(i) : (aε, Dxψε(xε, yε, tε), X) ∈ Pθ
2,+

u1(xε, tε),

(bε, Dyψε(xε, yε, tε), Y ) ∈ Pθ
2,+

(−u2)(yε, tε),

(ii) : −(1/α + ‖A‖)Id ≤
(

X 0
0 Y

)
≤ A + αA2,

(iii) : aε + bε = ∂tψε(xε, yε, tε) = ∂tϕ(xε, tε),

where A = D2ψε(xε, yε, tε) =




D2
xϕ(xε, tε) + 2

ε2
Id − 2

ε2
Id

− 2
ε2

Id 2
ε2

Id


 .

Furthermore, by the definition of Pθ
2,+,Pθ

2,−, we have

(5.6) aε − F (Dxψε(xε, yε, tε), X)− f(u1(xε, tε)) ≤ 0,

(5.7) −bε − F (−Dyψε(xε, yε, tε),−Y )− f(u2(yε, tε)) ≥ 0.

Combining (iii) in (5.5), (5.6) and (5.7), we obtain
(5.8)
∂tϕ(xε, tε)−F (Dxψε(xε, yε, tε), X)+F (−Dyψε(xε, yε, tε),−Y )−f(u1(xε, tε))+f(u2(yε, tε)) ≤ 0.

Let α = ε2. A similar argument to that in [12] leads to

(5.9) X −D2ϕε(xε, tε) + Y ≤ −Cε2Y 2 + O(ε)

for some C > 0. Then

(∂tϕ−M+
Λ1,Λ2

(D2ϕ)− f(u1))(xε, tε) + f(u2)(yε, tε) − γ|Dxψ + Dyψ|(xε, yε, tε)
+ Cε2M−

Λ1,Λ2
(Y 2) + O(ε) ≤ 0.

Since M−
Λ1,Λ2

(Y 2) ≥ 0, letting ε → 0, then

(∂tϕ−M+
Λ1,Λ2

(D2ϕ)− γ|Dxϕ| − f(u1) + f(u2))(x̃, t̃) ≤ 0.

By the mean value theorem,

(∂tϕ−M+
Λ1,Λ2

(D2ϕ)− γ|Dxϕ| − c(x̃, t̃)(u1 − u2))(x̃, t̃) ≤ 0,

where c(x, t) is in (5.3). Hence

∂tw −M+
Λ1,Λ2

(D2w)− γ|Dxw| − c(x, t)w ≤ 0

for (x, t) ∈ Rn × (0, T ]. Since w̃ = −w,

−∂tw̃ +M−
Λ1,Λ2

(D2w̃)− γ|Dxw̃|+ c(x, t)w̃ ≤ 0.

The proof of the lemma is then fulfilled. ¤
We are ready to give the proof of Theorem 4.
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Proof of Theorem 4. We adopt the moving plane method to prove the theorem.
Define

Σλ = {(x1, x
′, t) ∈ Rn+1|x1 < λ, 0 < t ≤ T},

where x′ = {x2, · · · , xn}. Set

uλ(x1, x
′, t) = u(2λ− x1, x

′, t) and vλ(x, t) = uλ(x, t)− u(x, t).

Step 1: We start the plane from negative infinity. Since uλ satisfies the same equation
as u does by (F2). Thanks to Lemma 11, we have

−∂tvλ +M−
Λ1,Λ2

(D2vλ)− γ|∇vλ|+ c(x, t)vλ ≤ 0.

We may assume that |c(x, t)| ≤ c0 for some c0 > 0, since f(u) is locally Lipschitz. Let

v̄λ =
vλ

e−(c0+1)t
,

then v̄λ satisfies

(5.10) −∂tv̄λ +M−
Λ1,Λ2

(D2v̄λ)− γ|∇v̄λ|+ c̃(x, t)v̄λ ≤ 0,

where c̃(x, t) = c(x, t)− c0− 1. Note that c̃(x, t) < 0. In order to prove that vλ ≥ 0 in Σλ,
it is sufficient to show that v̄λ ≥ 0 in Σλ. Suppose the contrary, that v̄λ < 0 somewhere
in Σλ. Since

|u(x, t)| → 0 uniformly as |x| → ∞,

then

vλ(x, t) ≥ −u(x, t)e(c0+1)t → 0

as |x| → ∞. Due to the fact that v̄λ = 0 on ∂Σλ := {(x1, x
′, t)|x1 = λ, 0 < t ≤ T} and

the assumption of initial boundary condition u0(x), there exists some point z0 ∈ Σλ such
that

v̄λ(z
0) = min

z∈Σλ

v̄λ(x, t) < 0.

By the strong maximum principle for fully nonlinear parabolic equations, we know it is a
contradiction. Step 1 is then completed.

Step 2: Set

λ0 := sup{λ < 0|vµ ≥ 0 in Σµ for−∞ < µ < λ}.
Our goal is to show that λ0 = 0. Suppose that λ0 < 0, then there exists sufficiently small
ε > 0 such that λ0 + ε < 0. We are going to prove that vλ ≥ 0 in Σλ for λ = λ0 + ε,
which contradicts the definition of λ0. If vλ0+ε < 0 somewhere in Σλ0+ε, by the asymptotic
behavior of u and the initial boundary condition, we know that the minimum point is
achieved in the interior of Σλ0+ε. By the same argument as that in Step 1, we see it
is impossible. Therefore, we confirm that λ0 = 0, that is, u is nondecreasing in x1 and
u(x1, x

′, t) ≤ u(−x1, x
′, t) for x1 ≤ 0.

If the initial value u0 is radial symmetry and nonincreasing in |x|. We move the plane
from positive infinity to the left. By the same argument as above, we will reach at λ0 = 0
again, which leads to the symmetry of the solution at x1 = 0. By the rotation invariance
of the equation, we obtain that u is radially symmetric with respect to (0, t) for any fixed
t ∈ (0, T ] and nonincreasing in |x|.

¤
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