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Abstract

The paper is concerned about an improvement of Moser-Trudinger inequality involving L?
norm for a bounded domain in n dimensions. Let

- Vw|[!

A= i ©.1)

wet " @z0 (WL}

be the first eigenvalue associated with n-Laplacian. We obtain the following strengthened
Moser-Trudinger inequality with blow-up analysis

sup f explalwlT (1 + allwll’},)ﬁ}dx <00 0.2)
Q

weH "™ @),V wll,=1

for 0 < @ < AQ) and 1 < p < n, and the supremum is infinity for & > A(Q), where
1

a, = nw™! and w,_, is the surface area of the unit ball in R”. We also obtain the existence

n—1
of the extremal functions for (0.2).
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1 Introduction

The sharp geometric inequalities and their extremal functions play an important role in analysis and
geometry. The study of sharp constant for Moser-Trudinger inequality traces back to 1960s and
1970s. In 1971, Moser [18] elegantly sharpened the results of Phohozaev [19], Trudinger [23] and
established the following so called Moser-Trudinger inequality
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sup fexp{alwlﬁ}dx < o (1.1)
weH, " (Q),IVwll,=1 Y

1
for any @ < a,, where @, = nw,”| and w,_ is the surface area of the unit ball in R”, Q is a smooth
bounded domain in R"” and Hé’"(Q) is the completion of C’(Q2) under the norm

1
”W”H(l)‘n(Q) =(f |Vw|"dx+f|w|”dx)n.
Q Q

We also use ||- ||, to denote the L” norm with respect to the Lebesgue measure. For any a > a,, (1.1)
is shown to be invalid by explicit test functions, i.e. there exists a sequence of {w,} in H(l)’"(Q) with
[IVwell, = 1 such that

fexp{alwelﬁ}dx — 00 as €—0.
Q

On the other hand, for any fixed w € H(l)’"(Q), it is also known that

f exp{alw|*1}dx < oo
Q

for any .

Recently, Lu and Yang in [16] considered an extension of the Moser-Trudinger inequality. Their
work is motivated by Adimurthi-Druet [1] and Li [10] to some extent. Let
IVwil3

weH, (Q).w20 ||W||§ .

1,(Q) = (1.2)

The main result in [16] is the following:

Theorem A Let Q be a bounded smooth domain in R? and the eigenvalue Ap(Q) be as in (1.2).
Then

(i) : Forany 0 < a < 1,(Q),

sup f expldniwl*(1 + alwl)})} dx < co.
weH 2 (Q),IVwll=1 Y

(ii) : For any a > 1,(Q),

sup f expldniwl*(1 + alwl)})} dx = co.
weHy > (Q),[Vwlp=1 Y

The above theorem extends the main result of Adimurthi and Druet in [1], where the case p = 2
is considered. In this paper, we consider the general n dimensional case of Theorem A. We define

IVwliz

WEH&'"(Q),W%‘O ”Wl |[n7 '

AQ) = (1.3)

Adapting the idea in [11], [24] and [16], our first result is stated as:
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Theorem 1.1 Let Q be a bounded smooth domain in R". Assume that the eigenvalue A(Q) is as in
(1.3)and 1 < p < n. Then
(i) : Forany 0 < a < A(Q),

n 1
sup fexp{an|w|ﬁ(1 +alwll;)*T}dx < co.
weH )" (Q).[Vwll,=1 Y

(ii) : For any a > A(Q),

n 1
sup fexp{anlwlﬁ(l + allwllZ)ﬁ}dx = oo.
weHy" (Q),|[Vwll,=1 V&

If p = n, the above result is established in [24]. Obviously, our result is more general. If n = 2,
Theorem 1 is an extension of Theorem A. While n = 2 and p = 2, our theorem includes the main
result in [1].

We sketch the idea of the proof of Theorem 1.1. The conclusion (ii) of Theorem 1.1 is verified
based on the appropriate test functions. Without selecting test functions through Green function
that results in tedious and complicated computations as [24], we choose the test functions involving
the eigenfunction of the first eigenvalue in (1.3) inspired by [16]. Our test function is based on
taking cut-off Green function inside and the eigenfunction outside. By computing the explicit test
functions delicately, it naturally leads to the conclusion (ii) in Theorem 1.1. The proof of conclusion
(i) in above theorem is relied on a blow-up analysis of sequences of solutions to elliptic PDEs with
exponential growth in Q. Integral estimate instead of pointwise estimate is studied. In order to
handle the general case of p # n and the n dimensions, more subtle estimates are involved than
[16]. To be specific, the concentration point of the blow up sequence does not converge to the
boundary of Q in 2 dimensions by the moving plane method. However, the concentration point may
approach to the boundary for n Laplacian (see section 3 for more details). Together with the classical
Moser-Trudinger inequality and asymptotic estimate of the blow up sequence, we obtain the result
in conclusion (i).

Another interesting and important investigation of the Moser-Trudiger inequality is about the
existence. Carleson and Chang [3] first obtained the existence for (1.1) in the ball B in R". Later
Flucher [6] generalized the existence for any bounded domain in R?. Then Lin [14] proved the
existence of (1.1) in any bounded smooth domain in R”. Liin [10],[11], Li and Liu [13] obtained the
existence results for certain Moser-Trudinger inequalities on compact Riemannian manifolds with
or without boundary. For our Moser-Trudinger inequality involving L? norm in higher dimensions,
we establish the following:

Theorem 1.2 For any fixed 1 < p < n, there exists w, € H(l)’"(Q) with |[Vwgll, = 1 such that
f explanlwelT(1 + alwal)#}dx = sup f expla,wiT (1 + allwll)) 7} dx,
Q weHy" [Vwll,=1 Y
(@) : if n = 2 and « is sufficient small, or
(i) ifn>3and 0 < a < AQ).

Concerning about the existence in higher dimensions n > 3, it is interesting that the existence
of the improved Moser-Trudinger inequality with L” norm holds for the whole range of « derived
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in conclusion of Theorem 1.2. While in the case of n = 2, the extremal functions could only be
found for small a. The strategy in establishing Theorem 1.2 is the application of a contradiction
argument. The idea of proving our existence results is inspired by [10]. On one hand, We find a
upper bound for our Moser-Trudinger function with L” norm from the Carleson-Chang Theorem
under the assumption that the blow-up sequence exists. On the other hand, A sequence of test
functions can be constructed to achieve the exactly same lower bound. This contradiction yields the
fact that no blow-up occurs. Then Theorem 1.2 follows. Also in the n dimensions and for general
case 1 < p < n, more intricate calculation arises. Instead of choosing the general test functions in
[24],[12], we provide some of kind of concrete test functions to attain the lower bound.

The blow-up analysis is widely employed in the paper. This approach for elliptic equations
related to the classical Moser-Trudinger inequality was initiated in [3],[2], [10] and [1]. Similar
approaches and relevant existence results are also implemented in [12], [17] and references therein.

We also remark that sharp Moser-Trudinger inequalities in the Hesienberg group and Adams
inequalities in high order Sobolev spaces have been established. We refer the reader to [4], [5], [7],
[8], [9], [20], etc., just to name a few.

The rest of the paper is arranged as follows. In Section 2, we construct test functions to show
conclusion (ii) of Theorem 1.1. In Section 3, we consider the relevant Euler-Lagrange equation
for the maximizers of the subcritical Moser-Trudinger function with L” norm and investigate the
asymptotic behavior of the maximizers through blow-up analysis. Then it leads to the conclusion
(i) of Theorem 1.1. Section 4 is devote to the existence of the extremal functions of the improved
Moser-Trudinger inequality, i.e. Theorem 1.2. The letter C denotes a positive constant, which may
change from line to line.

2 The Test Functions Argument

In this section, we prove the conclusion (ii) of Theorem 1.1. We will build explicit test functions
to show the unboundedness of Moser-Trudinger function under suitable large parameter. We first
verify that the eigenvalue and eigenfunction of (1.3) is achievable.

Lemma 2.1 Forany p > 1, A(Q) > 0 in (1.3) is attained by the eigenvalue function ¢ € Hé’"(Q) N
CY(Q) satisfying

{ —Angp = AQ)glly P! in Q, o

IVell, =1, ¢>0 in Q.
Proof. The proof is a direct consequence of variation method. We present it here for completeness.

We select a sequence of {wy} such that [[will, = 1 and |[Vw]l; — AQ) as k — oco. Obviously wy is
bounded in H'"*(Q). We may assume that there exists a subsequence of wy such that

wr — wo weakly in H"(Q),
wyp — wg  strongly in LP(Q).
It follows that ||woll, = 1. We further infer that

f [Vwol" dx < lim inff [Vwi|" dx — AQ).
Q © Jo

k—
Thus, A(Q) = fQ [Vwol" dx > 0. Since [|V|wolll} = [[Vwoll;, we may assume that |wp| achieves

IVwllz

weHé’”(Q),in ”W”Z ’
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Let ¢ = %.  attains the above infimum and satisfies the Euler-Lagrange equation (2.1). The

positiveness of ¢ follows from the strong maximum principle.
We are ready to give the proof the second conclusion in Theorem 1.1.

Proof. [Proof of the Conclusion (ii) in Theorem 1.1] Since the Moser-Trudinger inequality is invari-
ant under translation, we may assume that 0 € Q and B; ¢ Q. We fix some xs € B; such that
|xs| = 6. Choosing 7, such that 72 log 1 — o and #**'log 1 — 0. Such ¢ is attainable. For instance,

fe = (log(1))7+. Set

n 1oL
(5 log o), Ixl <e,
— ] (& log )" (log-loglx)~tep(xs)(log e-log xl)
X) = an €
SDE( ) log 6—log e ’ < |x| <6,
telo(xs) + 0(x)(p(x) — o(x5))], x| > 6.

In above definition of ¢.(x), ¢ is the eigenvalue function in Lemma 2.1, 6(x) € C%(Q) is a cut-off
function satisfying |V6| < C/é and

O’ |x| S 69
0x)=4 0€(0, 1), <|xl <26, (2.2)
1, [x] = 26.

Leto = 1/(t.(log %)ﬁ)” . It is not hard to see that € < ¢ if € is small enough. We obtain that
=(2 log 1)"7 +1p(xp)l"

n — an
fes\xlsé'v"DE(XN dx = lexls& |x|"(log 6—log €)" dx

n=1
ol (& log DT ()l

(log 6—log e)*!

1 .
= 1-nw'  (log 1)~ tep(xs)(1 + 0e(1)),

where 0.(1) — 0 as € — 0. We also have

IVeoe(x)I" dx

2 [ ens 10OV () + VA1) = @(xs))I" dx
0(6")

f&slx\s%

and
flx\zza Vo (xX)|" dx

I fM [Vo(x)|" dx
(1 + O(")).

Summing the above integral estimates for |V (x)[" up, we get
1 |
f [Voe(x)|"dx = 1 — nw;_, (log —)_TIIEgo(xa)(l + 0.(1)) + £2(1 + O(6")).
Q €
Then

_n n 1 1 r o, n
IV@ell, " =1+ mwﬁ,l(log E) m 1ep(xs)(1 + 0e(1)) — nTlte(l + 0(5")). (2.3)
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Set v, = ﬁ, then ||Vv,||, = 1. Furthermore,

\%

AQhvelr:

I\

A .
[IVeellr (flx\zz(s lo(x)|P dx)

QI + 06N +nw!_ (og 15 1ap(x)(1 + 0,(1)
(1 + 0@"))

L@l + 067 (1 + 0
£(1+ 0(") + 067 ),

where /_1(Q)||cp0||g = 1 in Lemma 2.1 is used.
Next we establish the integral estimates on the domain of {x € Q : x| < €}. We have

%

(1 + Al F vl @ > nlog L1+ AQ)IIvell) ™ [Veelli T

n2
= nlog L(1+72(1+ 0@ + O 7 )

1+ 2w (log 1 1.p(xs)(1 + o(1))
—ﬁt’;(l +0(6"))

1
= nlogl+ 2w’ (log Lrtep(xs)(1 + 0(1))
—Llog 112(1 + O(6") + -2 log Le2(1 + O(12)

n2
+O(67)) + 0.(1)
1 ]
= nlogi+ %w;l(log Datep(0)(1 + 0e(1))

nz
+-L-log 11067 ) + 5 log 1170(6™) + 0e(1),

where the fact that ¢(xs5) = ¢(0) + 0.(1) is applied. Note that for p > 1,

1
log ~10(6") = o(1),

log lth((s"T:) = 0.(1).
€

Considering the above estimates, we deduce that

Joy explan(l + Al vl 71} >

— o0

CexplLw’_ (log )t ego(0)(1 + o(1))}

J.ZHU

as € — 0, since ¢(0) > 0 and (log %)ﬁts — oo. Here C is a positive constant independent of €. The
conclusion (ii) in Theorem 1 is completed.

3 Extremal of Subcritical Functions

In this section, we establish the conclusion (i) in Theorem 1.1. We first introduce some notations.

Let

50 = [ explpt + allwif) i) dx
Q
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and
H = {w e H  (QIIVwll, = 1}.

We also denote A(€2) by A for simplicity. We first present a technical lemma contributed by P. L.
Lions [15].
Lemma 3.1 Assume that w, € Hé’”(Q), IVwell, = 1 and we — wy weakly in Hé’"(Q). Then, for any
q < (1= IVwol)#r,
lim supf exp{anq|w€|ﬁ}dx < 00.

Q

e—0

Clearly, in the case of wy # 0, Lions’ result provides more information than (1.1). We begin
with the following existence lemma of the maximizer of the subcritical Moser-Trudinger function.

Lemma 3.2 For any small € and 0 < a < A, there exists an extremal function w. € C'(Q) N H such
that

18w = sup I2,_ ().
weH

Proof. For any € > 0, there exists a sequence of {w;} € H such that

lim I _ (w;) = sup I _.(w).
imeo 7" weH !

Since w; is bounded in Hé’"(Q), there exists a subsequence of w; (We do not distinguish subsequence
and sequence in the paper. It could be recognized from the context) such that

w; — w, weakly in H(])’"(Q),
w; — we strongly in LI(Q),
w; = We a.e.in

forany 1 < g < co as i — co. Hence
L _n_ L _n_
gi = exp{(an — e)(1 + allwill,)) =T lwi| T} — ge := exp{(an — )(1 + alwellp) T Iwel*T}

a.e. in Q. Thanks to Lions’ result (Lemma 3.1), for any ¢ < 1/(1 — IIVwEIIZ)ﬁ,

limsupfexp{anqwi”%'}dx < 00,
o)

i—0o0

Due to Lemma 2.1,

1
1= IVwellz
for 0 < @ < A. Thus, g; is bounded in L*(Q) for some s > 1. Since g; — g. a.e in Q , we infer that
gi — ge strongly in L'(Q) as i — co. Therefore, the extremal function is attained for the case of
a, —eand ||[Vw|l, = 1.

L+ allwll, <

Lemma 3.3 Va,0 < a < 4,
imIS _ (we)=s
e—0 " W

up I§ (w).
P
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Proof. The proof is similar to [24]. The interested reader may refer to [24] for the details.

Thanks to Lemma 3.3, in order to prove the conclusion (i) in Theorem 1.1, we focus on the
extremal function w.. From the explicit form of the improved Moser-Trudinger inequality with L?
norm, we only consider the nonnegative w.. The Euler-Lagrange equation for w, € Hé'”(Q) aYel(9))
of I§ _ (we) is

1 n
=1, w1 -1 n— -1
—ApWe :,Be/le We ] CXP{CVEWe "1+ 7€“Wf”p pW? , (3.1

where
we € Hy"(Q),  IVwell, = 1,

@e = (a — )1 + allwll})™,
Be = (1 + allwell2)/(1 + 2allwell?). 3.2)
Ye = /(1 + 2allwell?),

2 =
e = Jo Iwel# explaew '} dx.

Let me = we(x.) = maxg we(x). We may assume that m, — oo as € — oo. Otherwise, if m,
is bounded, by applying elliptic estimate e.g. [22] to (3.1), The conclusion (i) in Theorem 1 and
Theorem 2 follow directly. Since Q is a compact set in R”, x, — z for some z € Q as € — 0.
Two cases may occur if the blow-up sequence exists, that is, the concentration point z lies in the
interior of Q or z lies on 0€). We are going to analyze the asymptotic behavior of w, in those cases,
respectively.

Case 1. z lies in the interior of Q.

Lemma 3.4 If m. — o, then we — 0 weakly in H"(Q), we — 0 strongly in LY(Q) for any q > 1
and |[Vw|" dx — ¢, in sense of measure as € — 0, where 0, is the Dirac measure at z.

Proof. Since w, is bounded in Hé’"(Q), we may assume that

we — wo weakly in Hé’"(Q),
we — wy strongly in LI(Q)

foranyg > lase — 0.
Suppose wy % 0. For any 0 < o < A(Q2), we have

L+ alwell, = 1+ allwoll}, < m
- 0lln

Thanks to Lions’ result (Lemma 3.1), exp{aewﬁ } is bounded in L*(Q) for some s > 1. For sufficient
small €, using Holder’s inequality,
—A,we € L(Q)

for some sy > 1. Classical elliptic estimate implies that w, is bounded in a neighborhood of z. It
contradicts the assumption that me — co. Moreover,

Qe = @, Be— 1, and ye - a

ase€ — 0.
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Assume that [Vwe|"dx — p in the sense of measure as € — 0. If ¢ # J,, we claims that
there exists a cut-off function ¢ € C(‘)(Q), which is supported in B,(z) € Q for some r > 0 with
0 < ¢(x) < 1in B,(2)\B,/2(z) and ¢(x) = 1 in B,/»(z) satisfying

HVwel"dx <1 -n
B, (2)

for some 1 > 0 and small enough €. We prove the claim by contradiction. There exist sequences of
n; = 0and r; — 0 as i — oo such that

GilVwe["dx > 1 —n;
By, (2)

for every ¢;(x) € C(l)(B,(z)) and ¢;(x) = 1 in B,,/2(z). Then
f Vw " dx > 1 = 1. (3.3)
r1/2(2)

Taking i — oo, the left hand side of (3.3) converges to 0. However, 1 —n; — 1. This contradiction
leads to the claim. Since we — 0 strongly in L9(€2) for any g > 1, we may assume that

f IV(gwol"dx < 1-n
B,(2)

provided e is sufficient small. By the classical Moser-Trudinger inequality, exp{a,w¢ } is bounded
in L*(B,,(z)) for some s > 1 and 0 < ry < r. Applying the elliptic estimates, w, is bounded in
B,,/2(2), which contradicts the fact that m, — co again. Therefore, [Vw.|"dx — 6, as € = 0.

Let

_| =y

1o
Fe = AP m exp{&},
be = mlewe(xe + rex), (3.4)

1
Ye(x) = m™ (We(xe + 1ex) —my).
Note that ¢, and ¢, are defined in Q, := {x € R" : x. + rex € Q}. Following from the Euler-
Lagrange equation (3.1), ¢, ¢ satisfy

—Ande(x) = m; ¢"‘GXP{ae(w T (xe 4 rex) —mED)} +ml " yelwelly Pl ™! (3.5)

and
n-p

—Ape(x) = & - CXP{ae(We (Xe + rex) —mg” l)} + m 76||W6|| e > (3.6)

respectively.

Lemma 3.5 Fixed any 0 < 6 < @,/2, we have r! exp{émg%‘} —0ase— 0.

Proof. By the expression of r. in (3.4) and A, in (3.2),

r’f’exp{émg%‘} = fﬁ me exp{ aemg%‘}exp{ém"nj}

= B'm ”'exp{(é ae)m"_ fg T explacwi')
B mIT expl(26 — aomiT) [, wiT expl(ac — owlT)
CB'miT expl(26 — am?™)

- 0

IA

IA
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as € — 0. In above, we have applied Holder inequality, the classical Moser-Trudinger inequality,
and the fact that 8. — 1, m¢ — o0, @ = @, as € — 0.

By the fact that ||¢¢|]lc = 1 and Lemma 3.5, the right hand side of (3.5) vanishes as € — 0.
Applying the classical estimates [22],

e — ¢ inC. (R"), ase—0

loc

and
A =0 inR™.

Since ¢.(0) = 1, standard Liouville-type theorem yields that ¢x) = 1 in R".
Now we investigate the behavior of .. For x € Bg(0),

n n

n n o
W (Xe + 1ex) —m! met (gt = 1)

= M (g — 1) + O((ge — D)
= nf_]lﬁe(x) + 0e(Ye(x)).

Because of the negativeness of ¢, using the local estimates of n-Laplacian and Lemma 3.5, we
obtain that . is bounded in L*(Bg,2) in (3.6). Furthermore, i is bounded in C 1’”(BR/4) for some
0 < u < 1. Due to Arzela-Ascoli Theorem, there exists some i such that . — ¢ in C'(Bgye). Let
R — oo, we get e — ¢ in C, (R") as € — 0. Moreover,

o
n—1

fBR/s(O) exp{;5antdx < liminf.o JI;ER/@(O) exp{ac(we" (xe + rex) —m2 ")} dx

explac(we (x) —m& )" dx

= liminf.o J;BRre/s(Xe)

liminf_o(1 + 05(1))/l;l »E\B?Rré/ﬁ(xg) ng exp{areng Jdx
< 1

Hence, i satisfies
—La = exp{;anl,

¥(0) = supg, ¢ =0, 3.7)
o explitrany) < 1.
By solving a corresponding ODE,

~1 -
T Jog(l + (2!

a, n

W(x) = - )T [T, (3.8)

The interested readers may refer to [11] for similar arguments. The above reasoning is summarized
in the following lemma.
Lemma 3.6 ¢. — 1 and Y — Y in C}OC(R”) as € — 0, where i is in (3.8).
Define we 4 = min(we, dm,), where 0 < d < 1.
Lemma 3.7 We have

lim [ [Vweal"dx=d (3.9)
-0 Jo

and
1in(1) Vwe —dm)*|"dx =1 -d. (3.10)
€— Q
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Proof. Since ¢ — 1in C!

R, then we g > dme in By, (x). On one hand, from equation (3.1),

fg [Viwe — dme)*|" dx - fQ(wE —dm)tAwedx

1 n_
= L(Wf - dme)+ﬂelglwéﬂ exp{aEW:l }
- -1
+(We - dme)+yellwe||z ng dx

n

€1 n_
B oy We = dmoBeA! w T explaew? )

v

+we — dm)yellwelly "w? ™" dx.
On the other hand,

n— -1 n— 4
jﬁm-g(xf)(we - dms)')’e”We”lp pwg dx < 'Ye”We”p p“We”é

- 0,

which implies that

L n_
j;) Viwe —dmeo)*I"dx 2 fBRrE(xe)(We — dm)B A Wi explaewl " Y dx + o.(1)
fBR(O)(Wf - dmg)ﬂg/lglwg%‘ exp{aewg’%‘ yrldx + o(1)
> (1=d) [, o expli2r@y) dx +od1) + 0c(R)

where 0.(R) — 0 as € — 0 for any fixed R > 0. Considering (3.7), let € — 0, then R — oo,
lirgnﬁi(?ffQ V(we —dm)*|"dx > 1 —d. (3.1D)

By the same argument, we establish that

lim iglfj!; [Vweal" dx = d. (3.12)

Since

f IV(we — dmeo) ™" dx + f [VWweql" dx =1,
Q Q

by (3.12), we obtain
lim supf [Vwe —dm)*|"dx <1 -d.
Q

e—0

Combining the above inequality and (3.11), we deduce that

€

lim | [Vwe —dm)"dx=1-d.
0Ja

Then

lim | |Vwegy|"dx =d.
e—0 Q

The following lemma is used in proving the existence of extremal functions of the improved
Moser-Trudinger inequality with L7 norm. Since it provides the asymptotic behavior of w,, we
include it here.
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Lemma 3.8

lim sup f exp{aewg’%‘}dx <|Q| + Igim lim supf exp{aewg’%‘}dx. (3.13)
Q Brre(xe)

e—0 = =0

Proof. For any 0 < d < 1, from the expression of A, in (3.2),

n

n_ n N
hexplaew Y dx = [ explaow }dx+ [, explacws}dx

A
(dm)aT

IA

fg exp{a/eng Ydx +

n
—1

Thanks to (3.9) and Lions’ result, exp{a.w’; } in bounded in L*(€) for some s > 1. Since weqs — 0
a.e.inQase— 0in Lemma 3.4,

fexp{aewi‘}dx — fexp{O} dx=Q, ase— 0.
Q ’ Q

Lete — 0,thend — 1 and

n_ Ae
lim sup f expf{aewe ™" }dx < |Q| + lim sup ——. (3.14)
Q

-0 0 !
On the other hand, from the r. in (3.4),
Ae na,,

f explacwl ' }dx = — exp{ I
Brretre) Beml JBO) n-

Yldx + o(R)), (3.15)

where 0.(R) — 0 as € — 0 for any fixed R > 0. Taking € — 0, then R — co and by the fact that
Be— 1,

n_ Ae
lim lim supf expf{aew "} dx = limsup ——. 3.16)
BRrexe)

—00 e—0

e—0 méﬂ

Together with (3.14), the lemma is completed.
By splitting € into three parts

Q= ({We > de} \BRVF(-XE)) U {WE < dme} U Ber(xe)
for some 0 < d < 1, we get

Lemma 3.9 V¢ € C77(Q),

1 n_
lir%f goﬂgxlglmewg’" expla.w!™" }dx = ¢(2).
€ Q

Lemma 3.10 If||f.|l, < C, and v. € C () N H"(Q) satisfies
—Apve = fet avl”ve inQ, (3.17)
where 0 < a < A(Q), then for 1 < q < n,

IVvelly < Ci(g,n, L, C).
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The above two lemmas are similar to those in [11] and [24]. We omit their proofs here.

1
Lemma 3.11 Forany 1 < g < n, m"' we is bounded in Hé’q(Q).

Proof. By (3.1), we have

1

1 n
= —1, 71 -1 - -1
—8a(mETwe) = mBeA' W explaew?T ) + yeme|well, Twl
L L (3.18)
-1

n_ _ 1 _
= meﬁe/lglwél_l eXP{QEWéH }+ 76||me We“?; p(mg_l we)P L
1

1
We claim that [|m;~" w||, is bounded. Otherwise, |[m¢™ wel|, — oo as € — 0. We show it is impossi-
ble. Set

L L
We = m™ we/llm¢™! We”p;

then [[well, = 1 and

n

1 -
MBA W explacwiT)

(W) = +yew (3.19)

1
llmZ T welly!
Thanks to Lemma 3.10, we conclude that ||[Vw||, < C which is independent of € for any 1 < g < n.

We may assume that there exists w € Hé’q(Q) such that
e — W weakly in Hy (),

we — W stronly in L7(Q),

as € — 0. Multiplying (3.19) by ¢ € Cé(Q) and taking € — 0, we have

f VA" 2 ViV dx = a f WP lodx.
Q Q

In above, Lemma 3.9 is applied. Since 0 < & < A(Q), we can easily deduce that w = 0. Nevertheless,
[Wll, = 1, which immediately implies that a contradiction exists. The claim is verified. Using the
Lemma 3.10 again, we show that m?~" w, is bounded in Hé’q(Q) forany 1 < g < n.

Lemma 3.12 For any any 1 < g < n, mZ'we — G weakly in Hé’q(Q) as € > 0, where G €
CY(Q\{z}) is the Green function satisfying

{ -2,G =6, + |Gl "GPt inQ, (3.20)

G=0 on Q.
E _ -
Furthermore, m!” we — G in CY(Y) for any domain Q' € (Q\{z}).

1
Proof. Since m!™' we is shown to be bounded in Hé’q(Q), we may assume that there exists G(x) such
that

1
mwe =G

weakly in Hé’q(Q) as € — 0. Testing (3.18) by ¢ € C(Q2), with the help of Lemma 3.9, we obtain

1 1 1 n_
Jo VnZTwol2VmT w)Vedx = [ gBemed;' w explacw™)
1 _ 1
+@yellmZ welly P (mI wP~! dx

- @@ +a [,lGll, "G pdx.
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Hence
f IVG"*VGVgdx = ¢(2) + |Gl * f G’ ' pdx, (3.21)
Q Q

that is,
_ n—=p ~p—1
-0,G =6, +allGll, "G

For any fixed small 6, we choose a cut-off function &(x) € C3(Q \ Bs(z)) such that £(x) = 1 on
Q \ B3s(z). By Lemma 3.4, we get
IVEwell, — 0

as € — 0. Then exp{(fwf)ﬁ} is bounded in L*(Q \ Bs(z)) for any s > 1. Furthermore, exp{w;%‘ }1is

o o p o
bounded in L°(Q \ Bss(z)). Since |jm} wEI|Z_‘"(mgH we)P~! is bounded L7 (Q), note that ||mZ" wel|,
is bounded, we obtain

1
lIme wello < C
in Q \ Bys(z) by applying the classical elliptic estimate. Furthermore,

1

mwe > G

in C'(Q\ Bss(z)) as € — 0.

So far, we have characterized the asymptotic behavior of w, in the case that the concentration
point lies in the interior of Q. Next we investigate the situation when z lies on dQ. The main idea is
almost the same as the case 1. We only show the differences below.

Case 2, z lies on 0Q).
Lemma 3.13 Let d, = dist(x,0Q) and be r. in (3.4). Then redg1 - 0.

Proof. We prove it by contradiction. Suppose there exists some R such that d¢ < Rre, i.e. 1/R <
dr;'. As we know, there exists a unique y. € 02 such that d. = |x. — y,|. Define

- 1
Ve(x) = mg We(Ye + reX).

By a reflection argument and elliptic estimates, we obtain V.(x) — 1in C l(E), which contradicts
the fact that v.(0) = 0 as € — 0. Therefore, the conclusion holds.
Let /.(x) be in (3.4) and ¢ be in (3.7). The above lemma also justifies that . (x) — ¢ in C! (R™).

loc

Arguing as the case 1, m”"w, — G weakly in H"9(Q) and in C'(Q), where G satisfies

G = allGIPGPY
{ -0,G = allGll, "G in Q, (322)

G=0 on Q.
Since 0 < a < A(Q), then G = 0. Hence
m* T w, — 0 weakly in H"(Q),
mEwe = 0 in C'(Q\ 2)

as e — 0.
With those two cases considered, we are able to finish the proof of Theorem 1.
Proof. [Proof of conclusion (i) in Theorem 1]
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If me is bounded, as we discussed before, the conclusion (i) of Theorem 1 holds directly. If
me — oo, we have ||w¢||,, = 0 from Lemma 3.4. Then

12w = [ expla, — Owel@T((1 +allwell))7 — D} exp{(a@, — €)lwlT} dx

explaam? (1 + alwel)= = 1) [, expl(a, — )wel#T} dx

IA

1 —n 1 n
exp{ L5 |Im wellh + mZT O(ImE wel 2} [, expl(an — )lwel1} dx.

IA

If z € Q, it is known that

lime= well, = Gl

With the aid of the classical Moser-Trudinger inequality and Lemma 3.2, we derive the conclusion
e

(i) in Theorem 1. If z € 9Q, as in the case 2, ||m."' wE||’; — 0. The same results follow.

4 Existence of Moser-Trudinger Functions

In this section, we show that the existence of the extremal functions of the improved Moser-Trudinger
inequality involving L” norm in n dimensions. We divide the proof Theorem 2 into two steps. In the
first step, we derive a upper bound for I . Two cases have to be considered as Section 3, that is, z
lies in the interior of Q and z lies on 9Q. Recall that

me = we(xe) = max Wwe(X).

Step 1: (The upper bound for I ) Under the assumption that m. — oo and xe — z € Q, the
following holds
Wy—1 1 1

expla,A, + 1+ -+ -+ ——}, 4.1)
2 n—1

sup fexp{aewﬁ}dx <|Q| +
Q

weH,"™(©Q), [Vwll,=1
where A, is defined in (4.2).

Case 1, z lies in the interior of Q.
Similar to [11], [12] and [24], the theorem of Carleson and Chang [3] plays an important role.

Theorem B: (Carleson and Chang)
Let B be the unit ball in R”. Assume that w, is a sequence of function in H(l)’"(]B) with |[Vw¢]|, = 1.
If [Vw,| — 6o weakly in sense of measure as € — 0, then

0 1 1
lim supfexp{anlwslﬁ}dx < IB|(1 + exp{l + 3 + - D.

e—0 B n—1
As in [24], we have the following representation of G(x) in Lemma 3.12. G(x) can be represented

as
G(x) = —ai log|x — 2| + A, + B(x), 4.2)

where A, is a constant, B(x) is continuous at z, B(z) = 0 and B(x) € C'(Q\2).
For simplicity we denote Bs(z) = {x € R" : |x — z] < 6} by B, and 0Bs(z) by 0Bs . With the aid
of Lemma 3.12, we have

Jos, [Vwel dx mET(Joyp, IVGP" dx + 0c(1)

= m(a fQ\BJ IGIl, PGP dx + fﬁB(; GIVGI"2% ds + 0.(1))

m:‘(;—" logé + allGll, + A; + B(§) + 05(1) + oc(1)),
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where (4.2) is used and ¢ € dB;s. Because of the continuity of B(£), we obtain that

n

f [Vw " dx = mg’%n'(_—n logo + 0/||G||Z + A, + 05(1) + 0(1)). 4.3)
Q\Bs @
Let ec = supyp, we and We = (we — €)™, then w, € Hé’"(IB(;). Since

Vwel"dx=1- f [Vwe|" dx
B;s Q\Bs

and
[Vt dx < [Vw,|" dx,
Bs Bs
based on (4.3), we get that
Vvl dx < 7= 1 - m*(;—” log & + allGI, + A, + 05(1) + 0.(1)). (4.4)
Bs n

By the Theorem B of Carleson-Chang,

1, 10" 1 1
lim sup f explaghwe/T2 17T dx < L (1 b expll + 5 4+ ——)). (4.5)
-0 JB, n 2 n-—1

Next we concentrate on the behavior of w,. on Bg,, (x,). Recall . in (3.2). Due to Lemma 3.12 and
the representation of G(x) in (4.2), we have

1
aewel 1 < (1 + alwellh) = (We + e0)iT

n_ L
< @I+ BT e+ S |GIE + 0(1)

n

2
< @+ 2GH - S5 log 6 + AL + 0e(1) + 05(1)

< Wfi + anA, —log 8" + 0u(1) + 0s(1).

Integrating the above estimates on Bg, (x.), we establish that

_n_
= n—1

ﬁBRrE(xE)exp{a/wa‘}dx < 5‘”exp{a/,1AZ+oE(1)}£B (Xé)exp{“‘wf Ydx

1
R —
re T: I

n

A _
< o explanA: +od(D} [ (expf T} = Ddxtodl)
< 67 explayd; + 0.1} J, (exp{™H—} — 1)dx.
Following from (4.5),
. L Wy-1 1 1
lim sup exp{a.w! " }dx < expla,A, + 1+ = +--- ) (4.6)
0 JIBr(x0) n 2 n-1
Thanks to Lemma 3.8, we deduce that
) 2 W1 1 1
limsup | exp{awi'}dx <|Q+ —expla,A, + 1+ =+ - }. 4.7
e—0 Q n 2 n-1
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So we complete the step 1 for the case that the limit point z lies in Q.
Case 2, z lies on 0Q.
1

We argue as the case 1. Since mwe = G = 0 weakly in H9(Q) for any 1 < ¢ < n and in
C'(Q\ 2), we have

-n

f IVwe|"dx < 1e = 1 —0c(1)mZ™".
Bs

On the domain Bk, (xc), we derive

n _ 1 n_
Aelwe| T < anlwe/Tg [*T + 0¢(1).
Combining the above estimates and Lemma 3.8, we obtain

o 1 1
lim sup f explaew? " }dx < Q|+ O™ exp{l + = +--- ——}.
e—0 Q 2 n—1

Taking 6 — 0,
lim supf exp{aewg%‘}dx <|Q],
Q

e—0
which obviously is a contradiction. Therefore, it indicates that z can not lie on 9Q.

In conclusion, the step 1 is shown.

In the second step, we construct an explicit test function. This test function provides a lower
bound for improved Moser-Trudinger inequality involving L” norm, which has the exactly same
value of the upper bound. By exploring this contradiction, we arrive at the fact that the blow-up
sequence do not exist, that is, m, is bounded in Q. Hence, Theorem 2 follows.

Step 2: (The Lower bound for I ) There exists . € H such that

Wy—-1 1 1
WA+ 1+ -+
exp{a,A, > —

f explasliee T (1 + allgell) ) dx > [ + )
Q

Let r(x) = |x — 2|, where z is the concentration point. Set G = G +
that G = O(r(x)). Define

"l(’(“f—r(x) —A.. Itis easy to see

o )y 27
cHen=T (=4 log(1+¢, (=) =T )+B)
(I+aciT |G
_ G-1G
Y= —/—— T+ for Re < r(x) < 2Re, 4.8)
(T +allGI) ¥

¢ for 2Re < r(x),

I T
(cn=T +al|Gllp) 7

for r(x) < Re,

where ¢, = (%! )ﬁ, 1 € C5’(Bare(2)) is a cut-off function with 77 = 1 on B,<(z) and ||V7lle = O(R%),

n
B is a constant to be determined, and R, ¢ depending on € will also be determined such that Re — 0

and R — oo. Since ¢, € Hé’"(Q), we have

-1 . ~logRe + A;
" gl 4 ("D iy gy = BT

1
n € cn1

—1
c+crmi(—

s

which implies that

n n—1

u —n
¢ = —loge+
p n

logc, — B+ A, + O(R#T). (4.9)
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Next we make sure that fQ [Voe"dx = 1.

n
CcyR1-T  _n-1
Vo l'dy = —n=L ™ 24
fr(x)sRe| ¢l an(cm-#allG\l’,ﬂ)fo (I+z) <
- R (-1y!
= —— ——dz
@n(cTT +alIGIIL) f I+2"

— nzcnl( D"
- ) (Z n—k—1

a/,l(crt I -HIIIG\

+O(R+T1))
n—1 1
= —F———(-(1+5+---+
an«-ﬁmnGu;)( (1+3
+O(R*1)),
where we have used the fact that
_Z i 1)nlk—1+1+-~~+ !
n-k-1 2 n—-1

Taking into account the expression of (4.8), then

J.ZHU

- log(1 + c,R#1)

L) +log(1 + ¢,R™1)

n—1 -n lo}
Vo l'dx = - loge +logc, + —A
fQ| o R i T e logen A,
1 1
(14 =+
» (1+ > + + . 1)
+O(R™T) + O(Relog(Re))).
(4.10)
Since fQ Vel dx = 1, by (4.10),
n - -1 1 1
e = loge+r T togen + A —(n—1)(1 4+ = 4+ ——)
n n 2 n-— 1
+O(R™T) + O(Relog(Re)). 4.11)
From (4.9),
1 1 -
B=mn-D{+ 3 +et —1) + O(R+1) + O(Relog(Re)). (4.12)
n—
Set R = —log €, which satisfies Re — 0 as € — 0. Since

nz nz nz
G1I, + O(cHTRT €7) + O(Re)T (~ log(Re))")

el =

¢t +alGllp

using the inequality

(L+0)m >1—
n-—1

s
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for ¢ small, (4.9) and (4.12),

( ) N g

)iT) + ——18

v

a,cr-1

(|Gl 2
-— 0(c~1)+0(canPeP)
(n—1)cnt

+O((RO) (- log(Re))")

n_ €1
Anlpel ™ (1 + a”‘Pe”Z)"’l

(x)

\%

-nloge+ (n—1)logc,
@, |Gl
(n — et

on Bg(z), where
1

n—1

)

1
D::a/nAz+(1+§+...+
and o
L= 0(c) + O(cFTRT €7) + O(Re(log(Re) + ORT).
With the above estimates, we have

Js,, explanled 71 (1 + alledl) ) dx

2
@, |G|

> exp{—nloge+ (n—1)logc, + D — = L}
X [ expl=nlog(l + ¢,("2)i)} dx
2 G”Zn n
> n—1 _ aa”| » S S —
> " lexp{D = fBRE ey dx
(n= l)wn i _ ’IGI" c,RT 2
> exp{D T +L} v d
(=D, _ ad?lGl can ((1+2)=1y2
> —=Lexp{D prTy +L} i d
» 2 G 2n
> 0bons oynp - 2L 1yl 4 OR™))
(n—1)cn-T
122 [|G2"
> @=L exp{D} - exp{D}% +L,
n(n—1)cn-T

where we have applied the fact that

HZ_%J Ck (=12
n—k-1 n—1°

k=0
On the other hand
n_ 1 1
oo DLl FT (L + allgel) T hdx > [ (1 + anlee #1) dx
annan
> Q|+ —=L + O(Re) + 0(c<" 1>2)
=% 1

Together with the above integral estimates on Bg,, (€2 \ Bg.), and the fact that

L — 0 and O(C‘ﬁ) -0,

)

291

4.13)
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we establish that

Wp-1

1
exp{anAz+1+§+-~-+

n_ ny ——
fexp{anlcﬁglf“‘ (1 + allgell,) =} dx > |Qf +
Q n n—1

} (4.14)

for any 0 < @ < A(Q) and sufficient small € in the case of n > 3, and for small enough « and
sufficient small € in the case of n = 2.

Proof. [Proof of Theorem 1.2] Combining the step 1 and step 2, we derive the existence of the ex-
tremal functions for the improved Moser-Trundiger inequality with L” norm in n dimensions.

Acknowledgement: The author is indebted to Prof. Guozhen Lu at Wayne State University for
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