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Abstract

Let B = B1(0) be the unit ball in Rn and r = |x|. We study the
poly-harmonic Dirichlet problem





(−4)mu = f(u) in B,

u =
∂u

∂r
= · · · = ∂m−1u

∂rm−1
= 0 on ∂B.

Using the corresponding integral equation and the method of mov-
ing planes in integral forms, we show that the positive solutions are
radially symmetric and monotone decreasing about the origin. We
also obtain regularity for solutions.

1 Introduction

In 1979, Gidas-Ni-Nirenberg [GNN] considered the following semilinear ellip-
tic equation { −4u = f(u) in B,

u = 0 on ∂B,
(1)

where B = B1(0) is the unit ball in Rn. Under the condition that f(·) is
locally Lipschitz continuous, by using the method of moving planes, they
proved that every positive smooth solution is radially symmetric and mono-
tone decreasing about the origin.

∗Partially supported by NSF Grant DMS-0604638
†Partially supported by G. Lu’s NSF Grant DMS-0901761

1



In this paper, we study a more general problem, the poly-harmonic op-
erator with Dirichlet boundary conditions





(−4)mu = f(u) in B,

u =
∂u

∂r
= · · · = ∂m−1u

∂rm−1
= 0 on ∂B.

(2)

where r = |x|, m is any positive integer.
As usual, we say that u is a weak solutions of (2) in Sobolev space Hm

0 (B),
if it satisfies

< u, v >m=

∫

B

f(u(x))v(x)dx, ∀ v ∈ Hm
0 (B), (3)

where

< u, v >m=

{ ∫
B
4m

2 u · 4m
2 v dx, m even,∫

B

(
54 (m−1)

2 u
)
·
(
54 (m−1)

2 v
)

dx, m odd

is an inner product in Hm
0 (B).

If u is a solution of (2), from the standard regularity theorem in [ADN],
then u ∈ H2m

0 (B). Multiplying both sides of (2) by the Green’s function
G(x, y) of (−4)m in B with the Dirichlet boundary conditions, then after
integration by parts, we arrive at the integral equation:

u(x) =

∫

B

G(x, y)f(u(y)) dy. (4)

We assume f(u(x)) ∈ L2(B) satisfies the following conditions:
(f1) f : [0, ∞) → R is nondecreasing, f(0) ≥ 0, and either one of the

following
(f2) f ′(·) is monotonic,

f ′(u) ∈
{

L
n

2m (B), if n > 2m,
Ls(B), for some s > 1, if n ≤ 2m,

or
(f̃2)

|f ′(u)| ≤ C1|u|β1 + C2|u|β2 + C3,

where C1, C2, C3 are nonnegative constants, β1 is some nonnegative constant,
and β2 is some non-positive constant. If C1 > 0, we require |u|β1 ∈ L

n
2m (B),
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and if C2 > 0, we need |u|β2 ∈ L
n

2m (B). Here f ′(·) is in the sense of distri-
bution. In the case 2m ≥ n, we have no restriction on β1 due to Sobolev
imbedding, however, we need |u|β2 ∈ Ls(B) for some s > 1.

We will use the method of moving plane in integral forms on integral
equation (4) and prove

Theorem 1. Assume that f(·) satisfies condition (f1) and either (f2) or (f̃2),
then every positive solutions of (2) is radially symmetric about the origin and
strictly decreasing in the radial direction.

Remark 1.1. (1) Obviously, in the special case when m = 1, (2) is reduced
to (1) considered in the elegant paper [GNN]. If f(u) is locally Lipschitz
continuous, then it satisfies our condition (f̃2) with C1 = C2 = 0. However,
there are functions, for example, f(u) = uα (0 < α < 1), that satisfy (f̃2),
but are not locally Lipschitz continuous even if u(x) is differentiable. Our
Theorem seems to expand the results of [GNN] in this respect.

(2) A similar method in proving our theorem can also be applied to the
case when f(u) = us + ut with 0 ≤ s < 1 and t > 1, although this kind of
f(·) is not Locally Lipschitz.

(3) We would like to mention that similar results have also been estab-
lished by Berchio, Gazzola, and Weth in [BGW]. In [BGW], they required
u ∈ L∞(B)

⋂
Hm

0 (B), f satisfies (f1) and be continuous. Here we only need
u ∈ Hm

0 (B). When f(u) = up, our conditions seem weaker. Our results and
theirs complement each other due to different approaches.

For more general boundary value problems for higher order elliptic equa-
tions, please see [ADN].

(4) For m ≥ 2, the sign assumptions on f seem to be necessary in order
to attain the radial monotonicity of u, as indicated by the counterexample in
[S].

(5) Our method can also be applied to more general function f(|x|, u), if
f(|x|, u) is non-increasing with respect to |x| and with proper growth.

The method of moving planes was invented by Soviet mathematician
Alexandrov in the 1950s, then it is further developed by Serrin, Gidas, Ni,
Nirenberg, Caffarelli, Spruck, and many others. It is mainly based on various
maximum principles for partial differential equations. Recently, Chen, Li,
and Ou [CLO] introduced a new approach–the method of moving planes
in integral forms–to obtain symmetry, monotonicity, and nonexistence of
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solutions for integral equations. It is entirely different from the traditional
methods of moving planes used for partial differential equations. Instead
of relying on the differentiability and maximum principles of the structure,
a global integral norms are estimated. In many cases, one can prove that
a PDE system is equivalent to an integral system ( see [CLO] [CL2] [CL3]
[CL5]). Hence, the method of moving planes in integral forms can also be
adapted to obtain symmetry for solutions of PDEs.

Previously, the method of moving planes in integral forms were applied
to equations in the whole Rn, and it is the first time in this paper we adapt
it to a bounded domain with boundary conditions. As one will see in the
proof, there are some difficulties needed to be overcome and thus some new
approaches are involved.

For more articles concerning the method of moving planes on integral
equations, please see [CJLL] [CL] [CL1] [CL2] [CL3] [CL7] [CLO1] [Ha]
[HWY] [JL] [LiY4] [LL] [LM] [LQ] [LZ] [MC] [MC1] [MC2] [MZ] and the
references therein.

Besides symmetry, we also establish regularity for the solutions.

Theorem 2. Let u(x) be a positive solution of (4). Assume that u(x) ∈
Lq(B) for some q > n

n−2m
, and

∫

B

|f(u(y))|n/2mdy < ∞. (5)

Then u is uniformly bounded in B.

The paper is arranged as follows. In Section 1, we present some properties
of the Green’s function for the poly-harmonic Dirichlet problem in the ball.
In Section 2, we prove Theorem 1 using the method of moving planes in
integral forms. In Section 3, we derive Theorem 2 by using a regularity
lifting method. In this paper, we use C to denote various positive constants
whose value may vary from line to line.

2 Properties of Green’s Functions

In this section, we introduce some properties of the Green’s function G(x, y)
of (−4)mon the unit ball B with Dirichlet boundary conditions.
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For each fixed y ∈ B, the Green’s function is the solution of





(−4)mG(x, y) = δ(x− y) in B,

G =
∂G

∂r
= · · · = ∂m−1G

∂rm−1
= 0 on ∂B.

(6)

Thanks to Boggio [B], it can be expressed explicitly in terms of x and y.
To this end, define, for x, y ∈ Rn,

d(x, y) = |x− y|2

and

θ(x, y) =

{
(1− |x|2)(1− |y|2) if x, y ∈ B,
0 x 6∈ B or y 6∈ B.

(7)

Then for x, y ∈ B, x 6= y, we have the following representation

G(x, y) = Cm
n |x− y|2m−n

∫ θ(x,y)

|x−y|2

0

zm−1

(z + 1)
n
2

dz

= Cm
n H(d(x, y), θ(x, y)).

Here Cm
n is a positive constant and

H : (0, ∞)× [0, ∞) → R, H(s, t) = sm−n
2

∫ t
s

0

zm−1

(z + 1)
n
2

dz.

For λ ∈ (−1, 0), let

Σλ = {x = (x1, · · · , xn) ∈ B | x1 < λ}

and
ΣC

λ = B \ Σλ,

the complement of Σλ in B.
The following lemma states some properties of the Green’s function, which

will be used in the next section. The first part was established in [BGW].
Here we present a simpler proof.

Lemma 2.1. Let λ ∈ (−1, 0).
(i) For any

x, y ∈ Σλ, x 6= y,
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we have
G(xλ, yλ) > max{G(xλ, y), G(x, yλ)} (8)

and
G(xλ, yλ)−G(x, y) > |G(xλ, y)−G(x, yλ)|. (9)

(ii) For any
x ∈ Σλ, y ∈ ΣC

λ ,

it holds
G(xλ, y) > G(x, y). (10)

Proof.
Since x, y ∈ Σλ, it is easy to verify that

d(xλ, yλ) < d(x, yλ) and θ(xλ, yλ) > θ(x, yλ). (11)

Moreover we have

θ(xλ, yλ) > max(θ(x, yλ), θ(xλ, y))

≥ min(θ(x, yλ), θ(xλ, y))

> θ(x, y). (12)

Consider

G(x, y) = Cm
n H(s, t) = Cm

n sm−n
2

∫ t
s

0

zm−1

(z + 1)
n
2

dz

= Cm
n

∫ t

0

zm−1

(z + s)
n
2

with
t = θ(x, y) and s = d(x, y).

Then for s, t > 0,
∂H

∂s
= −n

2

∫ t

0

zm−1

(z + s)
n
2
+1

< 0, (13)

∂H

∂t
=

tm−1

(t + s)
n
2

> 0 (14)

and
∂2H

∂t∂s
= −n

2

tm−1

(t + s)
n
2
+1

< 0. (15)
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(i) From (11), (13), and (14), we arrive at (8).
While by (12) and (15), we have

G(xλ, yλ)−G(x, y) = Cm
n

∫ θ(xλ,yλ)

θ(x,y)

∂H(d(x, y), t)

∂t
dt

> Cm
n

∫ θ(xλ,yλ)

θ(x,y)

∂H(d(xλ, y), t)

∂t
dt

≥ Cm
n

∫ θ(xλ,y)

θ(x,yλ)

∂H(d(xλ, y), t)

∂t
dt

= Cm
n |H(d(xλ, y), θ(xλ, y))−H(d(x, yλ), θ(x, yλ))|

= |G(xλ, y)−G(x, yλ)|.

Here we have used the fact that d(xλ, y) = d(x, yλ).
(ii) Noticing that for x ∈ Σλ and y ∈ ΣC

λ , we have

|xλ − y| < |x− y| and 1− |x|2 < 1− |xλ|2.

Then (10) follows immediately from (13) and (14).
This completes the proof of Lemma 2.1.

3 Symmetry of Solutions

In this section, we prove Theorem 1.
Let λ ∈ (−1, 0),

Σλ = {x ∈ B | x1 < λ},
Tλ = {x ∈ Rn|x1 = λ},

xλ = {2λ− x1, x2, · · · , xn}
be the reflection of the point x about the hyperplane Tλ, and

Σ̃λ = {xλ | x ∈ Σλ},

the image of Σλ about the plane Tλ. Set

uλ(x) = u(xλ).
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To prove Theorem 1, we compare the value of u(x) with uλ(x) in Σλ. The
proof consists of two steps. In Step 1, we show that for λ sufficiently close
to −1, we have

wλ(x) := uλ(x)− u(x) ≥ 0 a.e. (16)

This provides a starting point for us to move the plane Tλ along the x1

direction. In Step 2, we move the plane continuously to the right as long as
inequality (16) holds. We show that the plane can be moved all the way to
λ = 0 and thus derive

u(−x1, x2, · · · , xn) ≤ u(x1, x2, · · · , xn), ∀x ∈ B, x1 ≥ 0. (17)

Similarly, we can start the plane Tλ near λ = 1 and move it to the left to the
limiting position T0 to deduce

u(−x1, x2, · · · , xn) ≥ u(x1, x2, · · · , xn), ∀x ∈ B, x1 ≥ 0. (18)

Combining inequalities (17) and (18), we conclude that u(x) is symmetric
about the plane T0. Since the direction of x1 can be chosen arbitrarily, we
deduce that u(x) is radially symmetric and decreasing about the origin.

The following lemmas are key ingredients in our integral estimates.

Lemma 3.1. For any x ∈ Σλ, it holds

u(x)− u(xλ) ≤
∫

Σλ

[G(xλ, yλ)−G(x, yλ)][f(u(y))− f(uλ(y))].

Proof. Obviously, we have

u(x) =

∫

Σλ

G(x , y)f(u(y)) dy +

∫

Σλ

G(x , yλ)f(uλ(y)) dy

+

∫

ΣC
λ \Σ̃λ

G(x, y)f(u(y))dy

and

uλ(x) =

∫

Σλ

G(xλ , y)f(u(y)) dy +

∫

Σλ

G(xλ , yλ)f(uλ(y)) dy

+

∫

ΣC
λ \Σ̃λ

G(xλ, y)f(u(y))dy.
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Now by properties (9) and (10) of the Green’s function and the non-
negativeness assumption on f , we arrive at

u(x)− u(xλ) ≤
∫

Σλ

[G(xλ, yλ)−G(x, yλ)][f(u(y))− f(uλ(y))] dy

+

∫

ΣC
λ \Σ̃λ

[G(x, y)−G(xλ, y)]f(u(y))dy

≤
∫

Σλ

[G(xλ, yλ)−G(x, yλ)][f(u(y))− f(uλ(y))] dy.

This completes the proof of the lemma.

Lemma 3.2. (An equivalent form of the Hardy-Littlewood-Sobolev inequal-
ity)

Assume 0 < α < n and Ω ⊂ Rn. Let g ∈ L
np

n+αp (Ω) for n
n−α

< p < ∞.
Define

Tg(x) =

∫

Ω

1

|x− y|n−α
g(y)dy.

Then
‖Tg‖Lp(Ω) ≤ C(n, p, α)‖g‖

L
np

n+αp (Ω)
. (19)

The proof of this Lemma is standard and can be found in book [CL4].

Proof of Theorem 1.
Step1. Define

Σ−
λ = {x ∈ Σλ|u(x) > uλ(x)},

the set where inequality (16) is violated. We are going to show that Σ−λ is
almost empty by estimating a certain integral norm on it.

By virtue of Lemma 3.1, property (8) of the Green’s function, and the
monotonicity of f(·), we have, for any x ∈ Σ−

λ ,

0 < u(x)− uλ(x)

≤
∫

Σ−λ

[G(xλ, yλ)−G(x, yλ)][f(u(y))− f(uλ(y))]dy

≤
∫

Σ−λ

G(xλ, yλ)[f(u(y))− f(uλ(y))] dy

≤
∫

Σ−λ

G(xλ, yλ)|f ′(ξ(y))||wλ(y)|dy, (20)
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where ξ(y) is valued between u(y) and uλ(y) by Mean Value Theorem.
Recall the representation formula:

G(x, y) = Cm
n |x− y|2m−n

∫ θ(x,y)

|x−y|2

0

zm−1

(z + 1)
n
2

dz. (21)

We consider three possible cases.
Case (i): 2m < n. By (21), we have

G(xλ, yλ) ≤ C

|xλ − yλ|n−2m
=

C

|x− y|n−2m
.

It follows from (20) that, for any x ∈ Σ−
λ ,

0 < u(x)− uλ(x)

≤ C

∫

Σ−λ

1

|x− y|n−2m
|f ′(ξ(y))||wλ(y)|dy. (22)

Applying the Hardy-Littlewood-Sobolev inequality and the Hölder inequal-
ity, for any q > n

n−2m
, (in particular, when q = 2n

n−2m
, wλ ∈ Lq(B) by Sobolev

imbedding), we have

‖wλ(x)‖Lq(Σ−λ ) ≤ C‖f ′(ξ(x))wλ(x)‖
L

nq
n+2mq (Σ−λ )

≤ C‖f ′(ξ(x))‖
L

n
2m (Σ−λ )

‖wλ(x)‖Lq(Σ−λ ). (23)

From assumption (f2), for λ sufficiently close to −1, we have

‖wλ‖Lq(Σ−λ ) ≤
1

2
‖wλ‖Lq(Σ−λ ). (24)

This implies that ‖wλ‖Lq(Σ−λ ) = 0, therefore Σ−
λ must be measure zero.

Case (ii): 2m = n. By (21), for any a > 0, it holds

G(x, y) ≤
∫ θ(x,y)

|x−y|2

0

1

1 + z
dz ≤ ln

(
1 +

C

|x− y|2
)
≤ Ca

|x− y|a .

Using (20) and Young’s inequality with 1
p

+ 1
r

= 1 + 1
q
; p, q, r > 1; and

q > r, we derive

‖wλ‖Lq(Σ−λ ) ≤ Ca‖ 1

|x|a‖Lp(Σ−λ )‖f ′(ξ(x))wλ(x)‖Lr(Σ−λ ).
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Consequently, by Hölder inequality,

‖wλ‖Lq(Σ−λ ) ≤ Ca‖ 1

|x|a‖Lp(Σ−λ )‖f ′(ξ(x))‖
L

p
p−1 (Σ−λ )

‖wλ‖Lq(Σ−λ ).

Choose p and a, such that p
p−1

= s (as given in (f2)), and ap < n. Then for

λ sufficiently close to −1, (24) holds.
Case (iii): 2m > n. Again by (21), we have

G(x, y) ≤ C|x− y|2m−n

(
1 +

θ(x, y)

|x− y|2
)m−n

2

≤ C1.

Then it follows from (20) that

‖wλ‖Lq(Σ−λ ) ≤ C[µ(Σ−
λ )]

1
q ‖f ′(ξ(x))‖

L
q

q−1 (Σ−λ )
‖wλ‖Lq(Σ−λ ).

Noticing that as λ sufficiently close to −1, µ(Σ−
λ ) is very small, and by (f2),

we again arrive at (24). Here we have chosen q
q−1

= s (as given in (f2)), this

is possible because wλ ∈ Lq(B) for any q > 1 by Sobolev imbedding.
Therefore, in all three cases, for λ close to −1, inequality (16) holds.
Step 2. We now move the plane x1 = λ continuously toward the right as

long as inequality (16) holds to its limiting position. Define

λ0 = sup{λ ∈ (−1 , 0)|wµ(x) ≥ 0, x ∈ Σµ, µ ≤ λ}. (25)

We argue that λ0 must be 0.
Otherwise, suppose λ0 < 0, we must have

uλ0(x) > u(x), ∀x ∈ Σλ0 .

In fact, similar to the proof of Lemma 3.1, we have

uλ(x)− u(x) ≥
∫

Σλ

[G(xλ, yλ)−G(x, yλ)][f(uλ(y))− f(u(y)] dy

+

∫

ΣC
λ \Σ̃λ

[G(xλ, y)−G(x, y)]f(u(y))dy.

If there exists some point x0 ∈ Σλ0 such that u(x0) = uλ0(x0), then by
Lemma 2.1, the monotonicity and nonnegative-ness of f , we derive

f(uλ0(y)) ≡ f(u(y)), ∀ y ∈ Σλ0 and f(u(y)) ≡ 0, ∀ y ∈ ΣC
λ \ Σ̃λ. (26)
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On the other hand,

u(x)− uλ0(x)

=

∫

Σλ0

[G(x, y)−G(xλ0 , y)]f(u(y)) dy +

∫

Σλ0

[G(x, yλ0)−G(xλ0 , yλ0)]f(uλ0(y)) dy

+

∫

ΣC
λ0
\Σ̃λ

[G(xλ0 , y)−G(x, y)]f(u(y))dy.

Combining this with (26) and noticing that ( from Lemma 2.1)

G(x, y)−G(xλ0 , y) + G(x, yλ0)−G(xλ0 , yλ0) < 0,

we deduce
f(u(y)) ≡ f(uλ0(y)) ≡ 0, ∀ y ∈ Σλ0 .

Consequently
f(u(y)) ≡ 0, ∀ y ∈ B.

This implies u ≡ 0 by the uniqueness of the Dirichlet problem, which is a
contradiction with our assumption that u > 0. Therefore we must have

uλ0(x) > u(x), ∀x ∈ Σλ0 . (27)

By virtue of Lusin theorem, for any δ > 0, there exists a closed subset
Fδ of Σλ0 , with µ(Σλ0 \Fδ) < δ, such that wλ0|Fδ

is continuous (with respect
to x), and hence wλ|Fδ

is continuous with respect to λ for λ close to λ0. By
(27), there exists ε > 0 such that for all λ ∈ [λ0, , λ0 + ε), it holds

wλ(x) ≥ 0, ∀x ∈ Fδ.

It follows that, for such λ,

µ(Σ−
λ ) ≤ µ(Σλ0 \ Fδ) + µ(Σλ \ Σλ0) ≤ δ + 2ε.

As we did in Step 1, in the case 2m < n, choose δ and ε sufficiently small
so that

C‖f ′(ξ(x))‖
L

n
2m (Σ−λ )

≤ 1

2
.

Consequently from (23), we have ‖wλ(x)‖Lq(Σ−λ ) = 0, and hence Σ−
λ must be

measure zero, and hence

wλ(x) ≥ 0, a.e. x ∈ Σλ, λ ∈ [λ0, λ0 + ε).
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This contradicts with the definition of λ0. Therefore, we must have λ0 = 0.
We now have completed the proof of the theorem in the case 2m < n. It is
similar for other cases.

4 Regularity of Solutions

In this section, we prove regularity of positive solutions u(x) for the poly-
harmonic Dirichlet problems, and the following lemma from [CL4] is a key
ingredient in our proof.

Lemma 4.1. (Regularity Lifting) Let V be a Hausdorff topological vector
space. Suppose there are two extended norms ( i.e. the norm of an element
in V might be infinity ) defined on V ,

‖ · ‖X , ‖ · ‖Y : V→[0,∞].

Assume that the spaces

X := {v ∈ V : ‖v‖X < ∞} and Y := {v ∈ V : ‖v‖Y < ∞}
are complete under the corresponding norms, and the convergence in X or
in Y implies the convergence in V .

Let T be a contracting map from X into itself and from Y into itself.
Assume that f ∈ X, and that there exits a function g ∈ Z := X ∩ Y such
that f = Tf + g in X. Then f also belongs to Z.

Proof of Theorem 2
We first show that

u ∈ Lp(B), for any p >
n

n− 2m
. (28)

In the following, we assume 2m < n. In this case, by the representation
of the Green’s function, we have

G(x, y) ≤ C

|x− y|n−2m
. (29)

For any real number a > 0, let A = {x ∈ B | |u(x)| > a} and

ua(x) =

{
u(x), if x ∈ A,
0, elsewhere.
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Set ub(x) = u(x)− ua(x). Then obviously

f(u) = f(ua)χA + f(ub)χD,

where χA is the characteristic function on the set A and D = B \ A.
Define the linear operator

Taw(x) =

∫

B

G(x, y)
f(ua(y))χA(y)

ua(y)
w(y) dy,

and write

I(x) =

∫

B

G(x, y)f(ub(y))χD(y) dy.

Then obviously, u satisfies the equation

u(x) = Tau(x) + I(x), ∀x ∈ B. (30)

We prove that, for a sufficiently large, Ta is a contracting map from Lp(B)
to Lp(B), for any p > n

n−2m
. In fact, by (29) and HLS inequality,

‖Taw‖Lp(B) ≤ C‖f(ua)χA

ua

w‖
L

np
n+2mp (B)

≤ C‖f(u)w‖
L

np
n+2mp (A)

.

Here for simplicity, we may assume a ≥ 1.
Then by Hölder inequality,

‖Taw‖Lp(B) ≤ C‖f(u)‖
L

n
2m (A)

‖w‖Lp(B).

Under the integrability assumption on f(u) in Theorem 2, we can choose
a sufficiently large, so that the measure of A is small and hence

‖Taw‖Lp(B) ≤ 1

2
‖w‖Lp(B).

Therefore Ta is a contracting operator from Lp(B) to Lp(B).
From the definition of I(x), it is obviously bounded. Now (28) is a con-

sequence of the Regularity Lifting Lemma 4.1.
Finally, by Hölder inequality, one can easily see that u ∈ L∞(B). This

completes the proof of the Theorem.
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