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Abstract

The main purpose of this paper is to establish Liouville-type theorems and decay estimates
for viscosity solutions to a class of fully nonlinear elliptic equations or systems in half
spaces without the boundedness assumptions on the solutions. Using the blow-up method
and doubling lemma of [18], we remove the boundedness assumption on solutions which
was often required in the proof of Liouville-type theorems in the literature. We also prove
the Liouville-type theorems for supersolutions of a system of fully nonlinear equations with
Pucci extremal operators in half spaces. Liouville theorems and decay estimates for high
order elliptic equations and systems have also been established by the authors in an earlier
work [15] when no boundedness assumption was given on the solutions.

1991 Mathematics Subject Classification. 35B53, 35J60, 35B44.
Key words. Fully nonlinear, elliptic equation, Pucci’s extremal operators, Supersolutions, Liouville-type theorem, Doubling

property.

∗Research is partly supported by a US NSF grant.
†

977



978 G. Lu, J. Zhu

1 Introduction
This article is devoted to the study of Liouville-type theorems for nonnegative viscosity
solution or supersolutions of a class of fully nonlinear uniformly elliptic equations and
systems in a half space Rn

+, i.e. either
{

F(x,D2u) + up = 0 in Rn
+,

u = 0 on ∂Rn
+

(1.1)

or {
F(x,D2u) + vp = 0 in Rn

+,
F(x,D2v) + uq = 0 in Rn

+

(1.2)

where Rn
+ = {x = (x′, xn) ∈ Rn−1 × R|xn > 0} with n ≥ 2. A continuous function F :

Rn × S n → R is referred to as an uniformly elliptic equation with ellipticity 0 < λ ≤ Λ if
for all M, P ∈ S n with P ≥ 0 (nonnegative definite), it holds that

λtr(P) ≤ F(x,M + P) − F(x,M) ≤ Λtr(P), (1.3)

where S n is the space of all real symmetric n × n matrix, and tr(P) is the trace of P ∈ S n.
Liouville-type theorems are powerful tools in proving a priori bounds for nonnega-

tive solutions in a bounded domain. They are widely applied in obtaining a priori esti-
mate for solutions of elliptic equations in the literature. Using the “blow-up” method (also
called rescaling argument) [12], an equation in a bounded domain will blow up into another
equation in the whole Euclidean space or a half space. With the aid of the corresponding
Liouville-type theorem in the Euclidean space Rn and half space Rn

+ and a contradiction
argument, the a priori bounds could be readily derived. Moreover, the existence of nonneg-
ative solutions to elliptic equations is established by the topological degree method using a
priori estimates (see. e.g. [10]).

In this paper we mainly consider the model in the case when F(x,D2u) = M+
λ,Λ(D2u).

HereM+
λ,Λ(D2u) is the Pucci extremal operator with parameters 0 < λ ≤ Λ, defined by

M+
λ,Λ(M) = Λ

∑

ei>0

ei + λ
∑

ei<0

ei

for any symmetric n × n matrix M, where ei = ei(M), i = 1, · · · , n, denotes the eigenvalue
of M. WhileM−λ,Λ(M) is defined as

M−λ,Λ(M) = λ
∑

ei>0

ei + Λ
∑

ei>0

ei.

Pucci’s operators are extremal in the sense that

M+
λ,Λ(M) = sup

A∈Aλ,Λ

tr(AM),

M−λ,Λ(M) = inf
A∈Aλ,Λ

tr(AM)
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with
Aλ,Λ = {A ∈ S n : λ|ξ|2 ≤ Aξ · ξT ≤ Λ|ξ|2, ∀ξ ∈ Rn}.

If the operator F is uniformly elliptic with ellipticity constant 0 < λ ≤ Λ, it results in

M−λ,Λ(M) ≤ F(x,M) ≤ M+
λ,Λ(M)

when F(x,O) = 0. We refer to the monograph [4] for more details on these operators.
Notice thatM+

λ,Λ andM−λ,Λ are not in the divergence form.
When λ = Λ = 1,M±λ,Λ coincide with the Laplace operators. Then (1.1) with F(x,D2u)

replaced byM±λ,Λ(D2u) becomes the

4u + up = 0 in Rn
+. (1.4)

It is well known that (1.4) does not have positive supersolutions in the half space for 1 <
p < n+1

n−1 , and does not have nonnegative solution for 1 < p < n+2
n−2 with u vanishing on the

boundary.
In view of these results for the semilinear equation (1.4), it would be interesting to

understand the structure of solutions for (1.1) and (1.2). Unlike the case of the semilinear
equations, the popular technique of Kelvin transform with moving plane method is no
longer available. We also note that there is no variational structure for fully nonlinear
elliptic equations, even for the Pucci extremal operators. Those impose new difficulties
for studying Liouville-type results. In [6], Cutri and Leoni establish the following non-
existence results in the spirit of the Hadamard three circle theorem [17]. In particular, they
have also shown that the critical exponent

p+ :=
ñ

ñ − 2

is optimal for supersolutions in (1.5), where

ñ =
λ

Λ
(n − 1) + 1.

It exhibits a nontrivial solution for (1.5) if p > p+. Namely, it is stated as the following
lemma.

Lemma 1.1 Assume that n ≥ 3. If 1 < p ≤ p+ or (1 < p < ∞ if ñ ≤ 2), then the only
viscosity supersolution of

{ M+
λ,Λ(D2u) + up = 0 in Rn,

u ≥ 0 in Rn (1.5)

is u ≡ 0.

With the help of moving plane method and the above Liouville-type theorem, Quaas
and Sirakov [19] make use of the idea of [8] and obtain a Liouville-type result in a half
space. They first prove the solution of (1.6) is non-decreasing in xn direction, then it leads
to the same problem in Rn−1 after a limiting process, which allows them to use Lemma 1.1.
Under the boundedness assumption, they show that
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Lemma 1.2 Let n ≥ 3 and p̃+ := λ(n−2)+Λ

λ(n−2)−Λ
. Then the equation


M+

λ,Λ(D2u) + up = 0 in Rn
+,

u ≥ 0 in Rn
+,

u = 0 in ∂Rn
+

(1.6)

has no nontrivial bounded solution, provided 1 < p ≤ p̃+ and λ(n − 2) > Λ ( or 1 < p < ∞
if λ(n − 2) ≤ Λ).

Note that p̃+ > p+ for λ(n − 2) > Λ. We are interested in the boundedness assumption
in Lemma 1.2. As we know, boundedness assumptions are often imposed in deriving such
Liouville-type theorem in half spaces. Using the Doubling Lemma recently developed
in [18] (see Section 2) and a blow-up technique, we indeed show that the boundedness
assumption is unnecessary for such equations. Similar ideas have been applied to derive
Liouville type theorems for solutions to higher order elliptic equations and systems in our
recent paper [15]. Our strategy is based on a contradiction argument. We suppose that
the solution u in (1.6) is unbounded. By the Doubling Lemma and blow-up method, the
equation (1.6) will become an equation in a whole Euclidean space or a half space. We
will then arrive at a contradiction under a certain range of p, which means that the solution
u has to be bounded. Applying Lemma 1.2 again, we obtain the Liouville-type results. In
this paper, we first obtain the following result.

Theorem 1.1 Let n ≥ 3. For 1 < p ≤ p+ if ñ > 2 (or 1 < p < ∞ if ñ ≤ 2 ), then the only
nonnegative solution for (1.6) is u ≡ 0.

Quaas and Sirakov in [20] consider the non-existence results for the elliptic system
with Pucci extremal operators in the Euclidean space and a half space, which are essential
in getting a priori bound and existence by fixed point theorem for fully nonlinear elliptic
system. Motivated by the work [6], they characterized the range of powers p, q for the
nonexistence of positive supersolutions of (1.7) in the Euclidean space.

Lemma 1.3 Let λ1, λ2,Λ1,Λ2 > 0. Set

M+
l (D2ul) =M+

λl,Λl
(D2ul)

for l = 1, 2. Define

ρl =
λl

Λl
, Nl = ρl(n − 1) + 1.

Let N1,N2 > 2 and pq > 1 with p, q ≥ 1. Then there are no positive supersolutions for
{ M+

1 (D2u1) + up
2 = 0 in Rn,

M+
2 (D2u2) + uq

1 = 0 in Rn,
(1.7)

if
2(p + 1)
pq − 1

≥ N1 − 2, or
2(q + 1)
pq − 1

≥ N2 − 2.
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By the moving plane method and Lemma 1.3 in the Euclidean space, the following
Liouville-type theorem in a half space is also established under the boundedness assump-
tion in [20].

Lemma 1.4 Let N1,N2 > 2 and pq > 1 with p, q ≥ 1. There exist no positive bounded
solutions for the elliptic equation system


M+

1 (D2u1) + up
2 = 0 in Rn

+,
M+

2 (D2u2) + uq
1 = 0 in Rn

+,
u1 = u2 = 0 on ∂Rn

+,
(1.8)

provided
2(p + 1)
pq − 1

≥ N1 − 2, or
2(q + 1)
pq − 1

≥ N2 − 2. (1.9)

We are also able to get rid of the boundedness assumption in the above lemma by
choosing appropriate rescaling functions and employing the Doubling Lemma argument.
More precisely, we prove the following

Theorem 1.2 There exist no positive solutions for (1.8) if p, q > 1 and the assumption
(1.9) is satisfied.

With the Liouville-type theorem for the Euclidean space in hand and the Doubling
Lemma, we can further investigate the singularity and decay estimates for positive solutions
of fully nonlinear elliptic equations in a bounded domain or an exterior domain. Let 1 <
p ≤ p+ if ñ > 2 or 1 < p < ∞ if ñ ≤ 2. Recall that ñ = λ

Λ
(n − 1) + 1. We consider

M+
λ,Λ(D2u) + up = 0 in Ω. (1.10)

We will establish the following

Theorem 1.3 Let Ω , Rn be a domain in Rn. There exists C = C(n, p) > 0 such that any
nonnegative solution of (1.10) satisfies

u + |∇u| 2
p+1 ≤ Cdist

−2
p−1 (x, ∂Ω), ∀ x ∈ Ω. (1.11)

In particular, if Ω is an exterior domain, i.e. the set {x ∈ Rn||x| > R} for some R > 0, then

u + |∇u| 2
p+1 ≤ C|x| −2

p−1 , ∀ |x| ≥ 2R.

If there exists a solution for a general continuous function f (u), i.e. u is a nonnegative
solution for

M+
λ,Λ(D2u) + f (u) = 0 in Ω. (1.12)

Similar singular and decay estimates also hold. Namely, if 1 < p ≤ p+ for ñ > 2 or
1 < p < ∞ for ñ ≤ 2, we have the following corollary.
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Corollary 1.1 Assume that

lim
u→∞

u−p f (u) = γ ∈ (0,∞).

There exists C(n, f ) > 0 independent of Ω such that any positive solution in (1.12) satisfies

u + |∇u| 2
p+1 ≤ C(1 + dist

−2
p−1 (x, ∂Ω)), ∀ x ∈ Ω.

In particular, if Ω = BR\{0} for some R, then

u + |∇u| 2
p+1 ≤ C(1 + |x| −2

p−1 ), ∀ 0 < |x| ≤ R/2.

Remark 1.1 Similar results also hold forM−λ,Λ(D2u) and its system in Theorem 1.1, The-
orem 1.2 and Theorem 1.3.

The study of the supersolutions for

M−λ,Λ(D2u) + up = 0 in Rn
+ (1.13)

without assumed boundary condition is more involved. Recently, Armstrong and Sirakov
[1] devised a general method for the nonexistence of positive supersolutions of elliptic
operators in the whole Euclidean space and in exterior domains, which only needs the
maximum principle and an asymptotically homogeneous subsolution at infinity for these
elliptic operators. Notice that these elliptic operators include Pucci extremal operators
as special cases. Their method also adapts to cones, in particular half spaces, for fully
nonlinear operators, although the Laplacian operator is considered there. See the proof
of Theorem 5.1 in [1]. Especially the optimal range of p for Liouville-type property in
(1.13) could be characterized by the proof of Theorem 5.1 in [1] and the work in [3]. Leoni
[14] obtains an explicit range for the Liouville-type results in (1.13), that is, there does not
exist any positive solution in (1.13) for −1 ≤ p ≤ Λn+λ

Λn−λ . Notice that this range may not
be optimal. By explicit test functions, there does exist a supersolution for p > Λ(n−1)+2λ

Λ(n−1) .
Motivated by the work in [1], the author in [14] also points out that the inequality

M+
λ,Λ(D2u) + up ≤ 0 in Rn

+ (1.14)

does not have any positive solution for

−1 ≤ p ≤ ñ + 1
ñ − 1

.

We consider the supersolutions for a system of fully nonlinear elliptic equations with
Pucci’s extremal operators in half spaces, i.e.

{ M+
λ,Λ(D2u) + vp = 0 in Rn

+,

M+
λ,Λ(D2v) + uq = 0 in Rn

+.
(1.15)
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Note that the method in [1] has been applied to systems of elliptic equations in exterior
domains. It is also valid for cones. We provide an elementary proof to obtain some explicit
range of p, q for the nonexistence of supersolutions. We adapt the proof in [14]. The
difficulty of Leoni’ proof for (1.13) is to show the Liouville-type property holds for the
limiting case p = Λn+λ

Λn−λ . In order to achieve this, some explicit subsolution is constructed
under nontrivial calculations. Our main effort is also devoted to building such explicit
subsolution for the operatorM+

λ,Λ instead ofM−λ,Λ. We show the following Liouville-type
theorem:

Theorem 1.4 Assume that ñ ≥ 2 and p, q > 0, there exists only trivial nonnegative super-
solution for (1.15) provided

(1) pq > 1 and 2(p+1)
pq−1 > ñ − 1 or 2(q+1)

pq−1 > ñ − 1,
or

(2) 2(p+1)
pq−1 = ñ − 1 and 2(q+1)

pq−1 = ñ − 1,
or

(3) pq = 1.

Combining our idea in Theorem 1.4 and the estimates for M−λ,Λ(D2u) in [14], we are
able to establish the following Liouville-type results for

{ M−λ,Λ(D2u) + vp = 0 in Rn
+,

M−λ,Λ(D2v) + uq = 0 in Rn
+.

(1.16)

Corollary 1.2 There exists only trivial nonnegative supersolution for (1.16) if
(1) pq > 1 and 2(p+1)

pq−1 > Λn
λ
− 1 or 2(q+1)

pq−1 > Λn
λ
− 1,

or
(2) 2(p+1)

pq−1 = Λn
λ
− 1 and 2(q+1)

pq−1 = Λn
λ
− 1,

or
(3) pq = 1.

Finally we note that there is a large literature concerning Liouville-type results for
solution ( or supersolution ) of elliptic equations or system. We make no attempt to create
an exhaustive bibliography here. We refer to [2], [5], [7], [9], [11], [13], [16], [21] and
references therein for more account.

The outline of the paper is as follows. In Section 2, we present the basic results for the
definition of viscosity solution, comparison principle, Doubling Lemma and so on. Section
3 is devoted to the proof of removing the boundedness assumption for fully nonlinear el-
liptic equations and systems. We also show the singularity and decay estimates for a single
equation. The Liouville-type theorem for a system of equations in a half space without
boundary assumption is considered in Section 4. Throughout the paper, C and C1 denote
generic positive constants, which are independent of u, v and may vary from line to line.

2 Preliminaries
In this section we collect some basic results which will be applied throughout the paper for
fully nonlinear elliptic equations. We refer to [4], [6], [19] and references therein for the
proofs and results.



984 G. Lu, J. Zhu

Let us recall the notion of viscosity sub and supersolutions of fully nonlinear elliptic
equations

F(x, u,D2u) = 0 in Ω, (2.1)

where Ω is an open domain in Rn and F : Ω × R × S n → R is a continuous map with
F(x, t,M) satisfying (1.3) for every fixed t ∈ R, x ∈ Ω.

Definition: A continuous function u : Ω → R is a viscosity supersolution (subsolution) of
(2.1) in Ω, when the following condition holds: If x0 ∈ Ω, φ ∈ C2(Ω) and u − φ has a local
minimum (maximum) at x0, then

F(x0, u(x0),D2φ(x0)) ≤ (≥)0.

If u is a viscosity supersolution (subsolution), we say that u verifies

F(x, u,D2u) ≤ (≥)0

in the viscosity sense.
We say that u is a viscosity solution of (2.1) when it simultaneously is a viscosity

subsolution and supersolution.
We will make use of the following comparison principle (see e.g. [6]).

Lemma 2.1 (Comparison Principle) Let Ω ∈ Rn be a bounded domain and f ∈ C(Ω). If
u and v are respectively a supersolution and subsolution either ofM+

λ,Λ(D2u) = f (x) or of
M−λ,Λ(D2u) = f (x) in Ω, and u ≥ v on ∂Ω, then u ≥ v in Ω̄.

The following version of the Hopf boundary lemma holds (see e.g. [19]).

Lemma 2.2 Let Ω be a regular domain and u ∈ W2,n
loc (Ω)∩C(Ω̄) be a nonnegative solution

to
M+

λ,Λ(D2u) + c(x)u ≤ 0 in Ω

with bounded c(x). Then either u ≡ 0 in Ω or u(x) > 0 for all x ∈ Ω. Moreover, in the latter
case for any x ∈ ∂Ω such that u(x0) = 0,

lim
t→0+

sup
u(x0 − tν) − u(x0)

t
< 0,

where ν is the outer normal to ∂Ω.

We are going to use the following regularity results in [4] for Pucci operators in the
blow-up argument.

Lemma 2.3 (Regularity Lemma) If u is a viscosity solution to the fully nonlinear elliptic
equation with Pucci extremal operator

M+
λ,Λ(D2u) + g(x) = 0 (2.2)

in a ball B2R and g ∈ Lp(BR) for some p ≥ n, then u ∈ W2,p(BR) and the following interior
estimate holds

‖u‖W2,p(BR) ≤ C(‖u‖L∞(B2R) + ‖g‖Lp(B2R)). (2.3)
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Furthermore, if g ∈ Cα for some α ∈ (0, 1), then u ∈ C2,α and

‖u‖C2,α(BR) ≤ C(‖u‖L∞(B2R) + ‖g‖Cα(B2R)). (2.4)

In addition, if (2.2) holds in a regular domain and u = 0 on the boundary, then u satisfies a
Cα- estimate up to the boundary.

Note that the above C2,α estimate depends on the convexity of the Pucci extremal operator.
Next we state the closeness of a family of viscosity solutions to fully nonlinear equations
(see e.g. [4]).

Lemma 2.4 Assume un and gn are sequences of continuous functions and un is a solution
(or subsolution, or supersolution) of the equation

M+
λ,Λ(D2un) + gn(x) = 0 in Ω.

Assume that un and gn converge uniformly on compact subsets of Ω to function u and g.
Then u is a solution (or subsolution, or supersolution) of the equation

M+
λ,Λ(D2u) + g(x) = 0 in Ω.

We state the following technical lemma that is frequently used in Section 3. The proof
of this lemma is given in [18]. An interested reader may refer to it for more details. Based
on the doubling property, we can start the rescaling process to prove local estimates of
solutions for fully nonlinear equations.

Lemma 2.5 (Doubling lemma) Let (X, d) be a complete metric space and ∅ , D ⊂ Σ ⊂ X,
with Σ closed. Define M : D → (0,∞) to be bounded on compact subsets of D. If y ∈ D is
such that

M(y)dist(y,Γ) > 2k

for a fixed positive number k, where Γ = Σ \ D, then there exists x ∈ D such that

M(x)dist(x, Γ) > 2k, M(x) ≥ M(y).

Moreover,
M(z) ≤ 2M(x), ∀z ∈ D ∩ B̄(x, kM−1(x)).

Remark 2.1 If Γ = ∅, then dist(x,Γ) := ∞. In this case, we have following the version
of the Doubling Lemma. Let D = Σ ⊂ X, with Σ closed. Define M : D → (0,∞) to be
bounded on compact subsets of D, For every y ∈ D, there exists x ∈ D such that

M(x) ≥ M(y)

and
M(z) ≤ 2M(x), ∀z ∈ D ∩ B̄(x, kM−1(x)).



986 G. Lu, J. Zhu

3 Liouville-type theorems for elliptic equations in half spaces
We first present the proof of Theorem 1.1. Our idea is the combination of doubling property
and blow-up argument. This idea seems to be powerful in getting rid of the boundedness
assumption whenever proving Liouville-type theorems. We refer to [15] for applications of
this idea in higher order elliptic equations.

Proof of Theorem 1.1. Suppose that a solution u to the equation (1.6) is unbounded.
Namely, there exists a sequence of (yk) ∈ Rn

+ such that

u(yk)→ ∞
as k → ∞. Set

M(y) := u
p−1

2 (y) : Rn
+ → R.

Then M(yk) → ∞ as k → ∞ by the fact that p > 1. By taking D = Σ = X = Rn
+ in the

Doubling Lemma (i.e. Lemma 2.5) and Remark 2.1, there exists another sequence of {xk}
such that

M(xk) ≥ M(yk)

and
M(z) ≤ 2M(xk), ∀z ∈ Bk/M(xk)(xk) ∩ Rn

+.

Set
dk := xk,nM(xk),

where xk = (xk,1, · · · , xk,n) and

Hk := {ξ = (ξ1, · · · , ξn) ∈ Rn|ξn > −dk}.
We define a new function

vk(ξ) :=
u(xk +

ξ
M(xk) )

M
2

p−1 (xk)
.

Then, vk(ξ) is the nonnegative solution of
{ M+

λ,Λ(D2vk) + vp
k = 0 in Hk,

vk = 0 on ∂Hk = {ξ ∈ Rn|ξn = −dk} (3.1)

with
v

p−1
2

k (0) = 1 (3.2)

and
v

p−1
2

k (ξ) ≤ 2, ∀ξ ∈ Hk ∩ Bk(0). (3.3)

Two cases may occur as k → ∞, either Case (1)

xk,nM(xk)→ ∞
for a subsequence still denoted as before, or Case (2)

xk,nM(xk)→ d
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for a subsequence still denoted as before, here d ≥ 0. If Case (1) occurs, i.e. Hk ∩ Bk(0)→
Rn as k → ∞, then for any smooth compact set D in Rn, there exists k0 large enough such
that D ⊂ (Hk ∩ Bk(0)) as k ≥ k0. By regularity lemma (i.e. Lemma 2.3), (3.3) and Arzelá-
Ascoli theorem, vk → v in C2(D̄) for a subsequence. Furthermore, using a diagonalization
argument, vk → v in C2

loc(Rn) as k → ∞. From Lemma 2.4, we know that v solves

M+
λ,Λ(D2v) + vp = 0 in Rn.

Thanks to Lemma 1.1, there exists only a trivial solution provided

1 < p ≤ p+ for λ(n − 1) > Λ (3.4)

or
1 < p < ∞ for λ(n − 1) ≤ Λ. (3.5)

In the above, we have used the fact that ñ = 2 is equivalent to λ(n− 1) = Λ. However, (3.2)
implies that

v
p−1

2 (0) = 1,

which indicates that v is nontrivial. This contradiction leads to the conclusion that u in (1.6)
is bounded in the above range of p.

If the Case (2) occurs, we make a further translation. Set

ṽk(ξ) := vk(ξ − dken) for ξ ∈ Rn
+.

Then ṽk satisfies 
M+

λ,Λ(D2ṽk) + ṽp
k = 0 in Rn

+,

ṽk ≥ 0 in Rn
+,

ṽk = 0 on ∂Rn
+.

(3.6)

While
ṽ

p−1
2

k (dken) = 1 (3.7)

and
ṽ

p−1
2

k (ξ) ≤ 2, ∀ξ ∈ Rn
+ ∩ Bk(dken). (3.8)

For any smooth compact D in Rn
+, there also exists k0 large enough such that D ⊂ (Rn

+ ∩
Bk(0)) for any k ≥ k0. Thanks to regularity Lemma 2.3 and (3.8), we can extract a subse-
quence of ṽk such that ṽk → v in C2(D̄) ∩ C(D̄). A diagonalization argument shows that
ṽk → v uniformly as k → ∞. Furthermore, by Lemma 2.4, v solves


M+

λ,Λ(D2v) + vp = 0 in Rn
+,

v ≥ 0 in Rn
+,

v = 0 on ∂Rn
+.

(3.9)

Due to Lemma 1.2, we readily have that v ≡ 0 if

1 < p ≤ p̃+ for λ(n − 2) > Λ (3.10)
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or
1 < p < ∞ for λ(n − 2) ≤ Λ. (3.11)

It contradicts again with the fact that

v(den)
p−1

2 = 1 (3.12)

from (3.7). Hence u is bounded in Case (2).
Together with (3.4), (3.5), (3.10) and (3.11), we infer that u is bounded in (1.6) if

1 < p ≤ p+ in the case of λ(n − 1) > Λ or if 1 < p < ∞ in the case of λ(n − 1) ≤ Λ. Note
again that ñ = 2 implies that λ(n−1) = Λ. Applying Lemma 1.2 again, we obtain Theorem
1.1 in the above range of p.

We are now in the position to prove Theorem 1.2. Since we consider the elliptic system
with different powers p, q, we shall choose the rescaling function appropriately.

Proof of Theorem 1.2. Assume by contradiction that either u1 or u2 is unbounded, that
is, there exists a sequence yk such that

Mk(yk) = u1/α
1 (yk) + u1/β

2 (yk)→ ∞

as k → ∞. The constant α, β are positive numbers which will be determined later. From
the Doubling Lemma and Remark 1, there exists a sequence of {xk} such that

M(xk) ≥ M(yk)

and
M(z) ≤ 2M(xk), ∀z ∈ Bk/M(xk)(xk) ∩ Rn

+.

Define
dk := xk,nM(xk)

and
Hk := {ξ ∈ Rn|ξn > −dk}.

We do the following rescaling,

v1,k(ξ) :=
u1(xk +

ξ
M(xk) )

Mα(xk)
,

v2,k(ξ) :=
u2(xk +

ξ
M(xk) )

Mβ(xk)
.

Then, by (1.8), v1,k(ξ), v2,k(ξ) satisfy



M+
1 (D2v1,k)Mα+2

k (xk) + Mpβ
k (xk)vp

2,k = 0 in Hk,

M+
2 (D2v2,k)Mβ+2

k (xk) + Mqα
k (xk)vq

1,k = 0 in Hk,

v1,k = v2,k = 0 in ∂Hk.

(3.13)
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In order to get rid of Mk(xk) in (3.13), by setting α + 2 = pβ and β + 2 = qα, we conclude
that

α =
2(p + 1)
pq − 1

,

β =
2(q + 1)
pq − 1

.

With so chosen α, β, then v1,k, v2,k solve


M+
1 (D2v1,k) + vp

2,k = 0 in Hk,

M+
2 (D2v2,k) + vq

1,k = 0 in Hk.

v1,k = v2,k = 0 in ∂Hk.

(3.14)

Furthermore,

v
1
α

1,k(0) + v
1
β

2,k(0) = 1 (3.15)

and
v

1
α

1,k(ξ) + v
1
β

2,k(ξ) ≤ 2, ∀ξ ∈ Hk ∩ Bk(0).

Two cases may occur as k → ∞, either Case (1),

dk → ∞

for a subsequence still denoted as before, or Case (2)

dk → d

for a subsequence still denoted as before. We note that d ≥ 0.
If Case (1) occurs, i.e. Hk ∩Bk(0)→ Rn, we argue similarly as in the proof of Theorem

1.1. For any smooth compact set D in Rn, by Lemma 2.3 and Arzelá-Ascoli theorem, we
know that v1,k → v1 and v2,k → v2 in C2(D̄) for a subsequence. Using a diagonalization
argument, v1,k → v1 and v2,k → v2 in C2

loc(Rn) as k → ∞. From Lemma 2.4, we obtain that
v1, v2 satisfy { M+

1 (D2v1) + vp
2 = 0 in Rn,

M+
2 (D2v2) + vq

1 = 0 in Rn.
(3.16)

As shown in Lemma 1.3, v1 ≡ v2 ≡ 0 provided

2(p + 1)
pq − 1

≥ N1 − 2, or
2(q + 1)
pq − 1

≥ N2 − 2.

Nevertheless, (3.15) indicates that either v1 or v2 is nontrivial. We arrive at the contradic-
tion, which indicates u1, u2 in (1.8) are actually bounded in Case (1).

If Case (2) occurs, we translate the equation to be in the standard half space. Let

ṽ1,k(ξ) := v1,k(ξ − dken) for ξ ∈ Rn
+,

ṽ2,k(ξ) := v2,k(ξ − dken) for ξ ∈ Rn
+.
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Then ṽ1,k, ṽ2,k satisfy


M+
1 (D2ṽ1,k) + ṽp

2,k = 0 in Rn
+,

M+
2 (D2ṽ2,k) + ṽq

1,k = 0 in Rn
+,

ṽ1,k = ṽ1,k = 0 on ∂Rn
+.

(3.17)

Moreover,

ṽ
1
α

1,k(dken) + ṽ
1
β

2,k(dken) = 1 (3.18)

and
ṽ

1
α

1,k(ξ) + ṽ
1
β

2,k(ξ) ≤ 2, ∀ξ ∈ Rn
+ ∩ Bk(dken). (3.19)

Similar argument as in the proof of Theorem 1.1 shows that there exist ṽ1,k and ṽ2,k such
that

ṽ1,k → ṽ1

and
ṽ2,k → ṽ2

in C2
loc(Rn

+) ∩C(Rn
+) as k → ∞. ṽ1 and ṽ2 solve


M+

1 (D2ṽ1) + ṽp
2 = 0 in Rn

+,
M+

2 (D2ṽ2) + ṽq
1 = 0 in Rn

+,
ṽ1 = ṽ1 = 0 on ∂Rn

+.
(3.20)

Lemma 1.4 and (3.19) yield that ṽ1 ≡ ṽ2 ≡ 0 when (1.9) holds. However, it contradicts
to the fact of (3.18).

In conclusion, we obtain that u is bounded in (1.8) when the exponents p and q sat-
isfy (1.9). From Lemma 1.4 again, we conclude that the boundedness assumption is not
essential, i.e. Theorem 1.2 holds.

With the help of Lemma 1.1 and the Doubling Lemma, we are ready to give the proof
of Theorem 1.3.

Proof of Theorem 1.3. We again argue by contradiction. Suppose that (1.11) is false.
Then, there exists a sequence of functions uk in (1.10) on Ωk such that

Mk = u
p−1

2
k + |∇uk |

p−1
p+1

satisfying
Mk(yk) > 2kdist−1(yk, ∂Ωk).

By the Doubling Lemma, there exists xk ∈ Ωk such that

Mk(xk) ≥ Mk(yk),

Mk(xk) > 2kdist−1(xk, ∂Ωk)

and
Mk(z) ≤ 2Mk(xk), if |z − xk | ≤ kM−1

k (xk).
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We introduce a rescaled function

vk(ξ) =
uk(xk +

ξ
Mk(xk) )

M
2

p−1

k

.

Simple calculation yields that

M+
λ,Λ(D2vk) + vp

k = 0, ∀|ξ| ≤ k. (3.21)

Moreover,

(v
p−1

2
k + |∇vk |

p−1
p+1 )(0) = 1 (3.22)

and
(v

p−1
2

k + |∇vk |
p−1
p+1 )(ξ) ≤ 2, ∀|ξ| ≤ k. (3.23)

For any smooth compact set D in Rn, there exists k0 large enough such that D ⊂ Bk(0)
as k ≥ k0. By Lemma 2.3 and (3.23), we have

‖vk‖C2,α(D) ≤ C

for some C > 0. From Arzelá-Ascoli theorem, up to a subsequence, vk → v in C2(D̄). In
addition, by a diagonalization argument and Lemma 2.4, vk → v in C2

loc(Rn) as k → ∞,
which solves

M+
λ,Λ(D2v) + vp = 0 in Rn.

Since 1 < p ≤ p+, Lemma 1.1 implies that the only solution is v ≡ 0. However, (3.22)
shows that v is impossible to be trivial. Therefore, this contradiction leads to the conclusion
in Theorem 1.3.

For the proof of Corollary 1.1, it is very similar to the above argument. We shall omit
it here. The interested reader may refer to the above proof and [18].

4 A Liouville-type theorem for supersolutions of elliptic
systems in a half space

We introduce the following algebraic result in [14] for the eigenvalue of a special symmetric
matrix.

Lemma 4.1 Let ν, ω ∈ Rn be unitary vectors and a1, a2, a3 and a4 be constants. For the
symmetric matrix,

A = a1ν ⊗ ν + a2ω ⊗ ω + a3(ν ⊗ ω + ω ⊗ ν) + a4In,

where ν⊗ω denotes the n× n matrix whose i, j entry is νiω j, the eigenvalues of A are given
as follows,
•a4, with multiplicity (at least) n − 2.
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•a4 +
a1+a2+2a3ν·ω±

√
(a1+a2+2a3ν·ω)2+4(1−(ν·ω))2(a2

3−a1a2)2

2 , which are simple (if different from
a4).

In particular, if either a2
3 = a1a2 or (ν · ω)2 = 1, then the eigenvalues are a4 with

multiplicity n − 1 and a4 + a1 + a2 + 2a3ν · ω, which is simple.

Let us consider a lower semicontinuous function u ∈ Rn
+ → [0, ∞) for

M+
λ,Λ(D2u) ≤ 0 in Rn

+ (4.1)

in viscosity sense. For any r > 0, we define the function

mu(r) = inf
B+

r

u(x)
xn

, (4.2)

where B+
r is the half ball centered at the origin with radius r in Rn

+. We present the following
three – circles Hadamard type results for superharmonic functions in [14].

Lemma 4.2 Let u ∈ Rn
+ → [0, ∞) be a lower semicontinuous function satisfying (4.1).

Then the function mu(r) in (4.2) is a concave function of r−ñ, i.e. for every fixed R > r > 0
and for all r ≤ ρ ≤ R, one has

mu(ρ) ≥ mu(r)(ρ−ñ − R−ñ) + mu(R)(r−ñ − ρ−ñ)
r−ñ − R−ñ . (4.3)

Consequently,
r ∈ (0, ∞)→ mu(r)rñ

is nondecreasing.

To prove the Liouville-type theorem in (1.15) for the critical case

2(p + 1)
pq − 1

= ñ − 1, and
2(q + 1)
pq − 1

= ñ − 1,

we will compare the supersolutions u, v with an explicit subsolution of the equation

−M+
λ,Λ(D2φ) = (

xn

|x|ñ )
ñ+1
ñ−1 .

Such a subsolution is constructed as follows.

Lemma 4.3 There exist positive constants e, f > 0 and r0 ≥ 1, which only depend on λ,Λ
and n such that the function

Γ(x) =
xn

|x|ñ (eln|x| + f (
xn

|x| )
2)

satisfies
−M+

λ,Λ(D2Γ) ≤ (
xn

|x|ñ )
ñ+1
ñ−1 in Rn

+\Br0 (4.4)

in the classical sense.
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Proof. We consider

Γ1(x) :=
xn

|x|ñ ln|x|

and

Γ2(x) :=
x3

n

|x|ñ+2 .

Then Γ(x) = eΓ1(x) + f Γ2(x). From the property of the Pucci maximal operator, it yields
that

−M+
λ,Λ(D2Γ) ≤ −eM+

λ,Λ(D2Γ1) − fM−λ,Λ(D2Γ2). (4.5)

In order to obtain (4.4), we estimate the terms on the right hand side of (4.5), respectively.
As far as Γ1 is concerned, direct calculations show that

D2Γ1(x) = xn
|x|ñ+2 {[(ñ + 2)ñln|x| − 2(ñ + 1)] x

|x| ⊗ x
|x| + (1 − ñln|x|)en ⊗ en

+(1 − ñln|x|) |x|x ( x
|x| ⊗ en + en ⊗ x

|x| ) − (ñln|x| − 1)In}.

Recall that ñ = λ
Λ

(n − 1) + 1. According to Lemma 4.1, the eigenvalue µ1, µ2, · · · , µn of
D2Γ1 are

µ1 =
xn

|x|ñ+2

ñ2ln|x| − 3ñln|x| − 2ñ + 3 +
√

D
2

,

µ2 =
xn

|x|ñ+2

ñ2ln|x| − 3ñln|x| − 2ñ + 3 − √D
2

,

µi = − xn

|x|ñ+2 (ñln|x| − 1), 3 ≤ i ≤ n,

where

D = [ñ(ñ + 2)ln|x| − 2(ñ + 1) + 3(1 − ñln|x|)]2

+4(1 − x2
n
|x|2 ){(1 − ñln|x|)2 |x|2

x2
n
− [(ñ + 2)ñln|x| − 2(ñ + 1)](1 − ñln|x|)}

≥ [(ñ + 2)(ñln|x| − 2) + 3(1 − ñln|x|)]2

+4(1 − x2
n
|x|2 ){(1 − ñln|x|)2 |x|2

x2
n
− (ñ + 2)(ñln|x| − 2)(1 − ñln|x|)}

≥ [(ñln|x| − 2)(ñ − 1)]2 + 4(1 − x2
n
|x|2 )(ñln|x| − 2)2[ |x|

2

x2
n

+ (ñ + 2)].

Hence √
D ≥ (ñln|x| − 2)(ñ − 1).
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For r > r0, it follows that µ1 ≥ 0 and µi ≤ 0 for 2 ≤ i ≤ n, where r0 depends on Λ, λ and n.
Therefore, one has

M+
λ,Λ(D2Γ1) = Λµ1 + λ

∑n
i=2 µi

= xn
|x|ñ+2 { (Λ+λ)(ñ2ln|x|−3ñln|x|−2ñ+3)+(Λ−λ)

√
D

2

−(n − 2)λ(ñln|x| − 1)}

≥ xn
|x|ñ+2

(Λ+λ)(−2ñ+3)−2(Λ−λ)(ñ−1)+2(n−2)λ
2

= − xn
|x|ñ+2

2λn−Λ−λ
2

= −c1
xn
|x|ñ+2 ,

where c1 = 2λn−Λ−λ
2 . Since ñ = λ

Λ
(n − 1) + 1 ≥ 2, we get c1 > 0. By the argument in

Theorem 2.3 in [14], we have

M−λ,Λ(D2Γ2) ≥ λx3
n

|x|ñ+4 {(ñ + 2)[ñ − 3 − Λ
λ

(n − 1)] + 3(3 − Λ
λ

) |x|
2

x2
n
}

≥ λx3
n

|x|ñ+4 {ñ[ñ − 3 − Λ
λ

(n − 1)] + 2[ñ − Λ
λ

(n − 1)] + 3(1 − Λ
λ

) |x|
2

x2
n
}

=
λx3

n
|x|ñ+4 {ñ( λ

Λ
− Λ

λ
)(n − 1) − 2 Λ

λ
(n − 1) + 3(1 − Λ

λ
) |x|

2

x2
n
}

≥ − x3
n

|x|ñ+4 {c2 − c3
|x|2
x2

n
},

where c2 = ñ( Λ2−λ2

Λ
)(n − 1) + 2Λ(n − 1) and c3 = 3(Λ − λ). Then setting f = c−1

2 and
e =

c3
c2c1

, we obtain

−M+
λ,Λ(D2Γ) ≤ −eM+

λ,Λ(D2Γ1) − fM−λ,Λ(D2Γ2)

≤ ec1
xn
|x|ñ+2 + f c2

x3
n

|x|ñ+4 − f c3
xn
|x|ñ+2

≤ x3
n

|x|ñ+4 ,

Furthermore, since ñ ≥ 2, a direct calculation yields that

−M+
λ,Λ(D2Γ) ≤ x3

n
|x|ñ+4

≤ ( xn
|x|ñ )

ñ+1
ñ−1 .

Hence the lemma is completed.
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Proof of Theorem 1.4. By the strong maximal principle (i.e. Lemma 2.2), we may assume
that u, v > 0 in Rn

+. Let us rescale the supersolutions in (1.15). For every r > 0, we set

ur(x) = u(rx),

vr(x) = v(rx).

Then ur, vr > 0 are supersolutions for
{ M+

λ,Λ(D2ur) + r2vp
r = 0 in Rn

+,

M+
λ,Λ(D2vr) + r2uq

r = 0 in Rn
+.

(4.6)

Next we will choose appropriate test functions for supersolutions ur, vr. Selecting a smooth,
concave, nonincreasing function: η : [0, +∞)→ R satisfying

η(t) =


1 for 0 ≤ t ≤ 1/2,
> 0 for 1/2 < t < 3/4,
≤ 0 for t ≥ 3/4.

(4.7)

Fix a point a = (0, 1). Here Br(a) is a ball centered at a with radius r. Let

U(x) = ( inf
B1/2(a)

ur)η(|x − a|),

V(x) = ( inf
B1/2(a)

vr)η(|x − a|).

It is easy to see that ur ≥ U in B1/2(a), ur = U at some point on ∂B1/2(a) by the maximum
principle (i.e. Lemma 2.1) and ur > U outside B3/4(a). By the same observation, vr ≥ V
in B1/2(a), vr = V at some point on ∂B1/2(a) and vr > V outside B3/4(a). Therefore,
the infimum of ur − U, vr − V is non-positive and achieved at x1, x2 in B3/4(a)\B1/2(a),
respectively. From the definition of a viscosity solution and taking into account that U,V
are test functions for ur, vr, respectively, it yields that

vp
r (x1) ≤ C1

r2 inf
B1/2(a)

ur (4.8)

and
uq

r (x2) ≤ C1

r2 inf
B1/2(a)

vr, (4.9)

where

C1 = sup
B3/4(a)

(−M+
λ,Λ(D2η)) = sup

B3/4(a)
(−λ4η) = −λ inf

t∈[1/2, 3/4]
(η′′(t) + (n − 1)t−1η′).

Since ur(x) and vr(x) are also supersolutions for M+
λ,Λ(D2ur) = 0 and M+

λ,Λ(D2vr) = 0,
respectively, the monotonicity property ( see [6] ) implies that

inf
B1/2(a)

ur ≤ C inf
B3/4(a)

ur, (4.10)
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inf
B1/2(a)

vr ≤ C inf
B3/4(a)

vr. (4.11)

Furthermore, From (4.8)-(4.11), we get

( inf
B3/4(a)

vr)p ≤ vp
r (x1) ≤ C1

r2 inf
B1/2(a)

ur ≤ C
r2 inf

B3/4(a)
ur ≤ C

r2 (
C1

r2 inf
B1/2(a)

vr)
1
q

≤ C

r2(1+ 1
q )

( inf
B3/4(a)

vr)
1
q ,

that is,

( inf
B3/4(a)

vr) ≤ C

r
2(q+1)
pq−1

. (4.12)

Similar argument indicates that

( inf
B3/4(a)

ur)q ≤ uq
r (x1) ≤ C1

r2 inf
B1/2(a)

vr ≤ C
r2 inf

B3/4(a)
vr ≤ C

r2 (
C1

r2 inf
B1/2(a)

ur)
1
p

≤ C

r2(1+ 1
p )

( inf
B3/4(a)

ur)
1
p ,

that is,

( inf
B3/4(a)

ur) ≤ C

r
2(p+1)
pq−1

. (4.13)

If pq = 1, A contradiction is obviously arrived. We readily infer that u ≡ v ≡ 0.
While pq > 1, we observe that

inf
B3/4(a)

vr = inf
B3r/4(ar)

v ≥ r
4

inf
B3r/4(ar)

v
xn
≥ r

4
inf
B2r

v
xn

=
r
4

mv(2r), (4.14)

inf
B3/4(a)

ur = inf
B3r/4(ar)

u ≥ r
4

inf
B3r/4(ar)

u
xn
≥ r

4
inf
B2r

u
xn

=
r
4

mu(2r). (4.15)

From (4.12) and (4.14), we obtain

rñmv(r) ≤ C

r
2(q+1)
pq−1 +1−ñ

. (4.16)

By (4.13) and (4.15), we have

rñmu(r) ≤ C

r
2(p+1)
pq−1 +1−ñ

. (4.17)

If
2(p + 1)
pq − 1

> ñ − 1 or
2(q + 1)
pq − 1

> ñ − 1,

then rñmu(r)→ 0 or rñmv(r)→ 0 as r → ∞. Hence Lemma 4.2 shows that u ≡ 0 or v ≡ 0.
From the structure of fully nonlinear elliptic equation systems, we obtain u ≡ 0 and v ≡ 0
in either of the cases.
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Next we study the critical case that

2(p + 1)
pq − 1

= ñ − 1 and
2(q + 1)
pq − 1

= ñ − 1.

It is easy to check that p = q = ñ+1
ñ−1 . In this case, (4.16) and (4.17) become

rñmv(r) ≤ C ∀r > 0 (4.18)

and
rñmu(r) ≤ C ∀r > 0. (4.19)

Thanks to the monotonicity property of rñmu(r) in Lemma 4.2,

rñmu(r) ≥ rñ
0mu(r0) for r ≥ r0.

Then
u(x) ≥ C

xn

rñ for x ∈ Rn
+\Br0 . (4.20)

With the aid of (4.20),

−M+
λ,Λ(D2v) ≥ C(

xn

rñ )
ñ+1
ñ−1 , ∀x ∈ Rn

+\Br0 . (4.21)

Taking into account of Lemma 4.3,

−M+
λ,Λ(D2(γΓ)) ≤ −M+

λ,Λ(D2v) (4.22)

is satisfied by appropriately chosen γ. Choosing

γ ≤ mv(r0)
rñ1

0

elnr0 + f
,

we have
γΓ(x) ≤ v(x) on ∂Br0 .

For any fixed ε > 0, let R > 0 be so large that

γΓ(x) ≤ ε for Rn
+\BR.

The comparison principle in Lemma 2.1 for γΓ(x) and v(x) + ε in BR\Br0 shows that

γΓ(x) ≤ v(x) + ε.

In addition, let R→ ∞ and then ε → 0, we have

γΓ(x) ≤ v(x) ∀x ∈ Rn
+\Br0 .

From the explicit form of Γ(x),

v(x) ≥ C
xn

|x|ñ ln|x| ∀x ∈ Rn
+\Br0 ,
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which implies that
mv(r)rñ ≥ Clnr ∀r ≥ r0.

It contradicts the bound in (4.18). The theorem is thus accomplished.

The proof of Corollary 1.2 is the consequence of the above arguments and estimates in
[14]. We omit it here.

Acknowledgement: We would like to thank Professors Scott Armstrong and Boyan Sir-
akov for their comments on an earlier version of our manuscript posted in the Arxiv.org as
arXiv:1209.1144.
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