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Abstract

Let α be a real number satisfying 0 < α < n, 0 ≤ t < α, α∗(t) =
2(n−t)
n−α . We consider the integral equation

u(x) =
∫

Rn

uα∗(t)−1(y)
|y|t|x− y|n−α

dy, (1)

which is closely related to the Hardy-Sobolev inequality. In this paper,
we prove that every positive solution u(x) is radially symmetric and
strictly decreasing about the origin by the method of moving plane in
integral forms.

Moreover, we obtain the regularity of solutions to the following
integral equation

u(x) =
∫

Rn

|u(y)|pu(y)
|y|t|x− y|n−α

dy (2)

that corresponds to a large class of PDEs by regularity lifting method.

1 Introduction

In this paper, we consider a class of integral equations related to the Hardy-
Sobolev inequality. Let α be a real number satisfying 0 < α < n, 0 ≤ t < α,

∗Research is partially supported by a US NSF Grant DMS-0901761
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α∗(t) = 2(n−t)
n−α

. Let Rn be n-dimensional Euclidean space. The main purpose
of this paper is to study the symmetry and regularity of extremals of the
following integral equation:

u(x) =

∫

Rn

uα∗(t)−1(y)

|y|t|x− y|n−α
dy. (3)

We will show that solutions to the following differential equation of frac-
tional order satisfy the above integral equation (3):





(−4)
α
2 u = uα∗(t)−1

|y|t in Rn,

u > 0,
u ∈ H

α
2

,2(Rn),

(4)

where ‖u‖
H

α
2 ,2 = ‖((1 + |.|2)α

4 û)∨‖L2(Rn).
When t = 0, (3) becomes

u(x) =

∫

Rn

u
n+α
n−α (y)

|x− y|n−α
dy. (5)

The integral equation (5) arises as an Euler-Lagrange equation in the con-
text of the Hardy-Littlewood-Sobolev inequality which has been extensively
explored by Chen, Li and Ou [CLO] and Li [L] recently, where regularity and
extremal functions of (5) are also obtained. (5) is actually equivalent to the
following partial differential equation

(−4)
α
2 u = u

n+α
n−α . (6)

When α = 2 and 0 ≤ t < 2, the differential equation (4) and the inte-
gral equation (3) are closely related to the well-known Hardy-Sobolev type
inequalities. Such inequalities of second order have been extensively stud-
ied by many authors (see [CW],[CC],[MFS], [BT], [CaL] and the references
therein).

In fact, when α = 2 and t = 0, (3) is closely related to the Euler-
Lagrange equation of the extremal functions of the classical Sobolev in-
equality. Namely, (3) turns out to be the corresponding integral equation of
the well-known Sobolev inequality

(

∫

Rn

|u| 2n
n−2 dy)

n−2
2n ≤ C(

∫

Rn

|5u(y)|2 dy)
1
2
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where the best constant C and the extremal functions were identified by
Aubin [Au] and Talenti [T].

Moreover, when α = 2 and 0 < t < 2, (3) is closely related to the
Euler-Lagrange equation of the extremal functions of the classical Hardy-
Sobolev inequality which is a special case of Caffarelli-Kohn-Nirenberg in-
equality [CKN]. The classical Hardy-Sobolev inequality is stated as follows:
There is a positive constant C such that

(

∫

Rn

|u|2∗(t)
|y|t dy)

2
2∗(t) ≤ C

∫

Rn

|5u(y)|2 dy (7)

for any u(x) ∈ D1,2(Rn). Furthermore, the best constant in (7) is achieved
and the extremal function is identified by Lieb [Lie] up to dilation and trans-
lation by

u(x) =
1

(1 + |x|2−t)
n−2
2−t

.

We should note that the inequality (7) is a special case of the following
more general Caffarelli-Kohn-Nirenberg inequality [CKN]: If 0 ≤ a < n−2

2
,

a ≤ b < a + 1, p = 2n
n−2+2(b−a)

, then

(∫

Rn

|u(x)|p
|x|bp dx

) 2
p

≤ Ca,b

∫

Rn

|x|−2a|∇u(x)|2dx (8)

for any u ∈ C∞
0 (Rn). Positive solutions of the associated Euler equation to

(8) on an appropriate weighted Sobolev space turn out to be symmetric and
they can be identified explicitly by solving an ODE and they are of the same
form as in the case a = 0. We refer the reader to [CW], [CC], etc.

In Section 1, we prove the following theorem by the moving plane method
in integral forms.

Theorem 1. Assume u(x) ∈ L
2n

n−α (Rn) is a positive solution of (3), then
u(x) is radially symmetric and strictly decreasing about the origin.

In fact, we will derive the same result under the weaker condition that

u(x) ∈ L
2n

n−α

loc (Rn) as indicated in Remark 2.1.
It is well known that the moving plane method was invented by the So-

viet mathematician Alexandrov in the 1950s. Then it was further developed
by Serrin [Se], Gidas, Ni and Nirenberg [GNN], Caffarelli, Gidas and Spruck
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[CGS], Chen and Li [CL], Chang and Yang [CY] and many others. Recently,
Chen, Li and Ou [CLO] applied the moving plane method to integral equa-
tions to obtain the symmetry, monotonicity and nonexistence properties of
the solutions to the integral equations, see also Y. Li [L] using moving sphere
method. Instead of the extensive use of maximum principle of differential
equation, moving plane method in integral form explores various specific fea-
tures of the integral equation itself. By virtue of Hardy-Littlewood-Sobolev
inequality or Weighted-Hardy-Littlewood-Sobolev inequality and comparison
of solution to the integral equation (3) and its reflection with the plane, the
plane can be started to move from infinity. Furthermore the plane has to be
moved to a critical point. Hence symmetry and monotonicity properties of
solutions to (3) are consequently derived.

In Section 2, we study the regularity of extremal functions of the following
integral equation

u(x) =

∫

Rn

|u(y)|pu(y)

|y|t|x− y|n−α
dy, (9)

where p > 0. In [CLO2] and [L], the authors consider the nonnegative
solutions of the above integral equation in the case t = 0 and p = 2α

n−α
. They

prove u ∈ C∞(Rn).
In this paper, we consider the symmetry and regularity of solutions to

the integral equation (9) in the case 0 < t < α. Thus, the second main result
of our paper is as follows:

Theorem 2. If u(x) ∈ L
pn

α−t (Rn) is the solution of (9), then u(x) ∈ L∞(Rn).
Moreover u(x) ∈ C [α−t],β(Rn) for any β < α− t− [α− t]. In particular, u(x)
is C∞ in Rn \ {0}, where [α− t] is the greatest integer function.

If p = α∗(t) − 2, then pn
α−t

= 2n
n−α

, which is exactly the critical Sobolev

imbedding exponent of H
α
2

,2(Rn). If α = 2 and p is as above, our Theorem
2 provides a new proof of regularity of extremal function of Hardy-Sobolev
inequality, since we prove it through the corresponding integral equation. See
[MFS] for Hölder’s regularity of solutions of (4) in case of α = 2. Moreover
our Theorem 2 not only proves the regularity of extremal function of (4),
but can also be applied to regularity for more general integral equations or
corresponding partial differential equations. The method used here is called
Regularity Lifting theorem based on contraction map theorem. The related
lemma is presented in Section 2. It is a simple method to boost regularity of
solutions. We refer the reader to [CLO2] for more details.
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In Section 3, we will study the relations of (3) and (4).

Theorem 3. If u(x) is a solution to (4), then u(x) satisfies (3).

In [CLO], the authors prove the equivalence of (5) and (6), namely the
special case of t = 0. We will prove that (4) and (3) are actually equivalent
in Section 3. Moreover, if α is an even number, we then give a new and
relatively easy way to derive (3) from (4) by choosing an appropriate cut-off
function.

Combining Theorems 1 and 3, we get the following

Corollary 1. Assume u(x) ∈ L
2n

n−α (Rn) is a positive solution of (4), then
u(x) is radially symmetric and strictly decreasing about the origin.

Throughout this paper, the positive constant C is frequently used in the
paper. It may differ from line to line, even within the same line and it has
nothing to do with u(x).

2 The proof of Theorem 1

For the convenience of the reader, we present the following Weighted
Hardy-Littlewood-Sobolev inequality (see [JL]).

Lemma 2.1. Let 1 < l,m < ∞, 0 < ν < n, τ + β ≥ 0, 1
l
+ 1

m
+ ν+β+τ

n
= 2

and 1− 1
m
− ν

n
≤ τ

n
< 1− 1

m
. Then the weighted HLS inequality states

|
∫

Rn

∫

Rn

f(x)g(y)

|x|τ |x− y|ν |y|β dxdy| ≤ C‖f‖Lm‖g‖Ll .

The Weighted Hardy-Littlewood-Sobolev inequality can also be written in
another form. Let Tg(x) =

∫
Rn

g(y)
|x|τ |x−y|ν |y|β dy, then

‖Tg(x)‖Lγ = sup‖f‖Lm=1 < Tg(x), f(x) >≤ C‖g‖Ll , (10)

where 1
l
+ ν+β+τ

n
= 1 + 1

γ
, 1

m
+ 1

γ
= 1.

In order to prove our theorems, we first introduce some notations. For
any real number λ, define

Σλ = {x = (x1, x2, · · · , xn), x1 ≤ λ},
Tλ = {x|x1 = λ}.

Let x ∈ Σλ and xλ = (2λ− x1, x2, · · · , xn). Moreover, define uλ(x) = u(xλ).
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Lemma 2.2. For any solution u(x) of (3), we have

u(x)− uλ(x) =

∫

Σλ

[
1

|x− y|n−α
− 1

|xλ − y|n−α
][
uα∗(t)−1(y)

|y|t − u
α∗(t)−1
λ (y)

|yλ|t ] dy.

(11)

Proof. Since |x− yλ| = |xλ − y|,

u(x) =

∫

Σλ

uα∗(t)−1(y)

|y|t|x− y|n−α
dy +

∫

Σλ

u
α∗(t)−1
λ (y)

|yλ|t|x− yλ|n−α
dy,

u(xλ) =

∫

Σλ

uα∗(t)−1(y)

|y|t|xλ − y|n−α
dy +

∫

Σλ

u
α∗(t)−1
λ (y)

|yλ|t|x− y|n−α
dy.

By considering u(x) − u(xλ) and making a simple calculation, the proof of
the lemma is completed.

We now outline the ideas of the moving plane method in our proof. To
prove Theorem 1, We compare the value of u(x) with uλ(x) in Σλ. The proof
consists of two steps. In step 1, we show that for sufficiently negative λ,

u(x) ≤ uλ(x). (12)

Thus we can start to move the plane Tλ along the x1 direction continuously
from near negative infinity to the right as long as (12) holds. In step 2, We
show that the plane can move to the limit case x1 = 0, hence u(x) ≤ u0(x)
for x ∈ Σ0. If we choose to move the plane from positive infinity to the left
and carry on the same procedure as done in Steps 1 and 2, we can also prove
that u(x) ≥ u0(x) for x ∈ Rn \ Σ0. Therefore u(x) is symmetric about the
plane T0. Since the direction of x1 can be chosen arbitrarily, we deduce that
u(x) is symmetric and decreasing about the origin.

Proof. of Theorem :
Step 1: We show that for sufficiently negative λ,

u(x) ≤ u(xλ), ∀x ∈ Σλ. (13)
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Define
wλ(x) = u(x)− u(xλ)

and
Σ−

λ = {x ∈ Σλ|u(x) > u(xλ)}.
From Lemma (2.2), we have

u(x)− u(xλ) =

∫

Σλ\Σ−λ
(

1

|x− y|n−α
− 1

|xλ − y|n−α
)[

uα∗(t)−1

|y|t − u
α∗(t)−1
λ

|yλ|t ] dy

+

∫

Σ−λ

(
1

|x− y|n−α
− 1

|xλ − y|n−α
)[

uα∗(t)−1

|y|t − u
α∗(t)−1
λ

|yλ|t ] dy.

Since |x− y| < |xλ − y| and |y| > |yλ| in Σλ, by the definition of Σ−
λ ,

u(x)− u(xλ) ≤
∫

Σ−λ

(
1

|x− y|n−α
− 1

|xλ − y|n−α
)[

uα∗(t)−1 − u
α∗(t)−1
λ

|y|t ] dy.

Moreover, from the Mean Value Theorem,

u(x)− u(xλ) ≤ C

∫

Σ−λ

1

|x− y|n−α

1

|y|t u
α∗(t)−2(u− uλ) dy. (14)

By virtue of the Weighted-Hardy-Littlewood-Sobolev inequality, i.e. Lemma
2.1 (see also (10)) in the case of τ = 0 in (14), for any q > n

n−α
(without loss

of generality, let q = 2n
n−α

), we have

‖wλ‖Lq(Σ−λ ) ≤ C‖uα∗(t)−2wλ‖
L

nq
αq+n−qt (Σ−λ )

.

Then from Hölder ’s inequality, we get

‖wλ‖Lq(Σ−λ ) ≤ C‖u‖
2(α−t)
n−α

L
2n

n−α (Σ−λ )
‖wλ‖Lq(Σ−λ ).

Since u ∈ L
2n

n−α (Rn), we can choose sufficiently negative λ such that

C‖u‖
2(α−t)
n−α

L
2n

n−α (Σ−λ )
≤ 1

2
.

Therefore

‖wλ‖Lq(Σ−λ ) ≤
1

2
‖wλ‖Lq(Σ−λ ).
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This implies Σ−
λ must be of measure zero. Hence (13) is verified.

Step 2: Assuming that the plane can move to the critical point λ0 < 0.
If there exists some point x0 in Σλ0 such that u(x0) = uλ0(x0), from Lemma
(2.2), we have

0 = u(x0)−uλ0(x0) =

∫

Σλ0

[
1

|x0 − y|n−α
− 1

|xλ0 − y|n−α
][
uα∗(t)−1

|y|t −u
α∗(t)−1
λ0

|yλ0|t
] dy.

Let xλ0 = (x0)λ0 . Since |y| > |yλ0| in Σλ0 ,

u(y)α∗(t)−1

|y|t <
uλ0(y)α∗(t)−1

|yλ0|t
in Σλ0 .

Moreover |x0 − y| < |xλ0 − y| in Σλ0 , we infer that

u(x) ≡ uλ0(x) ≡ 0, ∀x ∈ Σλ0 .

This also implies that u(x) ≡ 0. But it is impossible. Hence

u(x) < uλ0(x), ∀x ∈ Σλ0 .

We Claim that

λ0 = sup{λ|u(x)− uλ(x) ≤ 0, ∀x ∈ Σλ} = 0. (15)

If not, i.e. λ0 < 0, we prove that the plane can be moved to the right a little

bit further. Since u ∈ L
2n

n−α (Rn), for any small ε, there exists a large enough
ball BR(0) such that ∫

Rn\BR(0)

u
2n

n−α dx < ε.

By virtue of Lusin’s theorem, for any δ, there exists a closed set Fδ such that
wλ0|Fδ

is continuous, with Fδ ⊂ BR(0)
⋂

Σλ0 = E and m(E − Fδ) < δ. As
wλ0(x) < 0 in the interior of Σλ0 , wλ0(x) < 0 in Fδ.

Choosing ε1 sufficiently small, for any λ ∈ [λ0 , λ0 + ε1), it holds that

wλ < 0, ∀x ∈ Fδ.

It follows that, for such λ,

Σ−
λ ⊂ M := (Rn \ BR(0)) ∪ (E \ Fδ) ∪ [(Σλ \ Σ−

λ0
) ∩ BR(0)].
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Choosing ε, δ and ε1 so small and from the absolute continuity of integration,
we have

C‖u‖
2(α−t)
n−α

L
2n

n−α (M)
≤ 1

2
.

Finally

||wλ‖Lq(Σ−λ ) ≤ C‖u‖
2(α−t)
n−α

L
2n

n−α (Σ−λ )
‖wλ‖Lq(Σ−λ ) <

1

2
‖wλ‖Lq(Σ−λ ).

This again implies Σ−
λ must be empty. It contradicts with the assumption

that λ0 < 0. Therefore, (15) is verified.
On the other hand, we can also move the plane from positive infinity to

zero by the similar procedure, hence u(x) is symmetric and monotonic with
respect to x1 = 0. Moreover, since the x1 direction can be chosen arbitrarily,
u(x) is radial symmetric and strictly monotonic with respect to the origin.
We thus have completed the proof of Theorem 1.

Remark 2.1. Since (3) is invariant under the Kelvin transform, we can
also prove that u(x) is symmetric with respect to the origin under a weaker

assumption that u(x) ∈ L
2n

n−α

loc (Rn). Assume

v(x) =
1

|x|n−α
u(

x

|x|2 ),

then v(x) satisfies (3) and v(x) ∈ L
2n

n−α
oc (Ω), where Ω is any domain with

positive distance from the origin. Carrying out the first and second steps for
v(x) as we did before, we conclude that v(x) is symmetric and monotonic
with respect to the origin. This implies that u(x) is symmetric with respect
to the origin.

3 The proof of Theorem 2

In this section, we prove the regularity for functions satisfying (9) by
the contraction map. We present the regularity lift lemma below. See also
([CL1]).
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Let Z be a given vector space, ‖.‖X and ‖.‖Y be two norms on Z. Define
a new norm ‖.‖Z by

‖.‖Z = p

√
‖.‖p

X + ‖.‖p
Y .

For simplicity, we assume that Z is complete with respect to the norm‖.‖Z .
Let X and Y be the completion of Z under ‖.‖X and ‖.‖Y , respectively. Here
one can choose p, 1 ≤ p ≤ ∞, according to what one needs. It’s easy to see
that Z = X

⋂
Y.

Lemma 3.1. (Regularity Lifting) Let T be a contraction map from X into
itself and from Y into itself. Assume that f ∈ X and that there exists a
function g ∈ Z such that f = Tf + g, then f also belongs to Z.

Proof. of Theorem 2:
We define a linear operator

Tuw(x) =

∫

Rn

|u(y)|pw
|y|t|x− y|n−α

dy.

For any positive real number a, define
{

ua(x) = u(x), if |u(x)| > a or |x| > a,
ua(x) = 0, otherwise.

(16)

Let ub(x) = u(x)− ua(x). Since u satisfies (9),

ua(x) =

∫

Rn

|ua|pua

|y|t|x− y|n−α
dy + I(x), (17)

where I(x) =
∫
Rn

|ub|pub

|y|t|x−y|n−α dy − ub(x).

As to I(x), for s > n
n−α

, we Claim that

I(x) ∈ L∞(Rn)
⋂

Ls(Rn).

Obviously, ub(x) ∈ L∞(Rn)
⋂

Ls(Rn).

Thus, we only need to prove A(x) :=
∫
Rn

|ub|pub

|y|t|x−y|n−α dy ∈ L∞(Rn)
⋂

Ls(Rn).

By the definition of ub(x), for ∀x ∈ Rn,

|A(x)| ≤ C

∫

|y|≤a

1

|y|t|x− y|n−α
dy.
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If x ∈ Rn \ B2a(0), |x− y| ≥ |y|, then

∫

|y|≤a

1

|y|t|x− y|n−α
dy ≤

∫

|y|≤a

1

|y|n−α+t
dy < ∞.

If x ∈ B2a(0),

∫

|y|≤a

1

|y|t|x− y|n−α
dy ≤

∫

|y|≤a

1

|y|n−α+t
dy +

∫

|x−y|≤3a

1

|x− y|n−α+t
dy < ∞,

hence A(x) ∈ L∞(Rn). Using Weighted Hardy-Littlewood-Sobolev inequality,

‖A(x)‖Ls ≤ ‖|ub|pub‖L
ns

αs+n−st (Ba)
< ∞,

then A(x) ∈ Ls(Rn). Therefore, we have proved the claim.
Next for any q > n

n−α
, we show that Tuaw is a contraction map. Ap-

plying the Weighted Hardy-Littlewood-Sobolev inequality and, then Hölder’s
inequality, we get

‖Tuaw‖Lq ≤ ‖|ua|pw‖
L

nq
αq+n−qt

≤ ‖|ua|p‖L
n

α−t
‖w‖Lq . (18)

Since u(x) ∈ L
np

α−t , for sufficiently large a, we deduce

‖Tuaw(x)‖Lq ≤ 1

2
‖w‖Lq , (19)

which shows that Tuaw is a contraction map. Applying (19) to both the case
of q = np

α−t
and the case of any q0 > n

n−α
, and by the contraction map lemma

(i.e. Lemma 3.1), we can conclude that ua ∈ Lq
⋂

Lq0 .
Furthermore, we Claim that u ∈ L∞(Rn). Since u(x) = ua(x) + ub(x)

and ub(x) ∈ L∞(Rn), we only need to verify ua(x) ∈ L∞(Rn). Due to (17)
and I(x) ∈ L∞(Rn), it is equivalent to verify that

B(x) :=

∫

Rn

|ua|pua

|y|t|x− y|n−α
dy ∈ L∞(Rn).

Note

B(x) ≤
∫

Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy +

∫

Rn\Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy. (20)
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If x ∈ Rn \ B2a(0), then |x− y| > |y| and

∫

Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy ≤

∫

Ba(0)

|ua|p+1

|y|n−α+t
dy < ∞ (21)

by Hölder’s inequality with the help of ua ∈ Lq
⋂

Lq0 .
If x ∈ B2a(0), similarly

∫

Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy ≤

∫

Ba(0)

|ua|p+1

|y|n−α+t
dy +

∫

B3a(x)

|ua|p+1

|x− y|n−α+t
dy < ∞

(22)
by Hölder’s inequality and the property that ua ∈ Lq

⋂
Lq0 .

Combining (21) and (22), for any x ∈ Rn, we derive that

∫

Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy < ∞. (23)

Next, for ∀x ∈ Rn,
∫

Rn\Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy ≤ 1

at

∫

Ba(x)

|ua|p+1

|x− y|n−α
dy

+

∫

(Rn\Ba(0))
⋂

(Rn\Ba(x))

|ua|p+1

|y|t|x− y|n−α
dy.

(24)

By virtue of Hölder’s inequality, it is easy to see that

1

at

∫

Ba(x)

|ua|p+1

|x− y|n−α
dy < ∞. (25)

Since
∫

(Rn\Ba(0))
⋂

(Rn\Ba(x))

|ua|p+1

|y|t|x− y|n−α
dy ≤

∫

Rn\Ba(x)

|ua|p+1

|x− y|n−α+t
dy

+

∫

Rn\Ba(0)

|ua|p+1

|y|n−α+t
dy,

we can also prove that
∫

(Rn\Ba(0))
⋂

(Rn\Ba(x))

|ua|p+1

|y|t|x− y|n−α
dy < ∞ (26)
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by Hölder’s inequality and the estimate ua ∈ Lq
⋂

Lq0 .
Through (24), (25) and (26), we deduce that

∫

Rn\Ba(0)

|ua|p+1

|y|t|x− y|n−α
dy < ∞. (27)

Therefore, from (20), (23) and (27), we have B(x) ∈ L∞(Rn). Hence the
claim that u(x) ∈ L∞(Rn) is verified.

To show the higher regularity, we first show that u(x) ∈ C∞(Rn \ {0}).
For any x ∈ Rn \ {0}, we choose a ball B3r(x) with radius 3r such that

0 /∈ B̄3r(x), then

u(x) =

∫

Rn\B3r(x)

|u|pu
|y|t|x− y|n−α

dy +

∫

B3r(x)

|u|pu
|y|t|x− y|n−α

dy. (28)

We show that R(x) :=
∫
Rn\B3r(x)

|u|pu
|y|t|x−y|n−α dy ∈ C∞(Rn \ {0}).

Let F (x, y) := |u(y)|pu(y)
|y|t|x−y|n−α χRn\B3r(x).

For fixed x, if h is small enough, considering

|F (x + hei, y)− F (x, y)

h
| = |

|u(y)|pu(y)
|y|t (

χRn\B3r(x+hei)

|x+hei−y|n−α − χRn\B3r(x)

|x−y|n−α )

h
|

≤ C
|u(y)|p+1χRn\B3r(x+θhei)

|y|t|x + θhei − y|n−α+1

≤ C
|u(y)|p+1

|y|t|x + θhei − y|n−α+1
χRn\B2r(x)

≤ C { |u(y)|p+1

|y|trn−α+1
χBε(0)

+
|u(y)|p+1

|y|t|x− y|n−α+1
χRn\(Br(x)∪Bε(0))},

(29)

where ei = {0, · · · , 1, · · · , 0} is the ith unit vector, 0 < θ < 1 and ε is so
small that Bε(0) ∩ B3r(x) = ∅. Since u ∈ L∞(Rn), it is easy to verify

∫

Bε(0)

|u|p+1

|y|trn−α+1
dy < ∞, (30)

13



for fixed r.
For such fixed r and ε, let

∫

Rn\(Br(x)∪Bε(0))

|u|p+1

|y|t|x− y|n−α+1
dy <

∫

Rn\Br(x)

|u|p+1

|x− y|n−α+1+t
dy

+

∫

Rn\Bε(0)

|u|p+1

|y|n−α+1+t
dy.

Since u ∈ Lq for any q > np
α−t

, using Hölder’s inequality,

∫

Rn\Br(x)

|u|p+1

|x− y|n−α+1+t
dy < ∞,

∫

Rn\Bε(0)

|u|p+1

|y|n−α+1+t
dy < ∞,

then ∫

Rn\(Br(x)∪Bε(0))

|u|p+1

|y|t|x− y|n−α+1
dy < ∞. (31)

With (29), (30), (31) and the Lebesgue dominated convergence theorem,
R(x) ∈ C1(Rn \ {0}). Continuing this process,

R(x) ∈ C∞(Rn \ {0}). (32)

By standard singular integral estimates (chapter 10 in [LL]),
∫

B2r(x)

|u|pu
|y|t|x− y|n−α

dy ∈ Cβ1(Rn \ {0}) (33)

for any β1 < α. Combining (28), (32) and (33), u(x) ∈ Cβ1(Rn \{0}). By the
bootstrap technique, we can prove that u(x) ∈ C∞(Rn \ {0}).

The difficulty of regularity occurs around the origin. We note that

u(x)− u(0) =

∫

Rn\B2r(0)

|u|pu
|y|t [

1

|x− y|n−α
− 1

|y|n−α
] dy

+

∫

B2r(0)

|u|pu
|y|t [

1

|x− y|n−α
− 1

|y|n−α
] dy.

If α − t ≤ 1, 0 ∈ D and the domain D ⊂ Br(0), we show that u ∈ C0,β(D)
for any β < α− t. Indeed, from the following property

||x− z|−c − |y − z|−c| ≤ c|x− y|b(|x− z|−c−b + |y − z|−c−b),

14



where c > 0 and 0 < b < 1( see also chapter 10 in [LL]),

supx∈D
|u(x)− u(0)|

|x|β ≤ Csupx∈D

∫

Rn\B2r(0)

|u|p+1

|y|t|x− y|n−α+β
dy

+ Csupx∈D

∫

B2r(0)

|u|p+1

|y|t|x− y|n−α+β
dy.

With the help of Hölder’s inequality as in (27), we have

supx∈D

∫

Rn\B2r(0)

|u|p+1

|y|t|x− y|n−α+β
dy < ∞. (34)

From Hölder’s inequality again and the property u ∈ L∞(Rn), we show

supx∈D

∫

B2r(0)

|u|p+1

|y|t|x− y|n−α+β
dy < ∞ (35)

for any β < α− t. Therefore, (34) and (35) imply that u ∈ C0,β(Rn).
If 1 < α − t < 2, similarly we can prove u(x) ∈ C1,β(D) for β < α − t,

then u(x) ∈ C1,β(Rn). For more general 0 < t < α, we conclude that u ∈
C [α−t],β(Rn) for any β < α − t − [α − t]. Hence, the proof of Theorem 2 is
complete.

4 The proof of Theorem 3

Proof. of Theorem 3:
The proof follows from the properties of the Riesz potential and the

Fourier transform of the Riesz potential and is quite similar to that in [CLO].
For the completeness and the convenience of the reader, we include a proof
here.

Let φ ∈ C∞
0 (Rn) and ψ(x) =

∫
Rn

φ(y)
|x−y|n−α dy. Then (−∆)

α
2 ψ = φ. Then

ψ ∈ Hα(Rn). So if u is a solution to the differential equation, then

∫

Rn

(−∆)
α
4 u(−∆)

α
4 ψdx =

∫

Rn

uα∗(t)(y)

|y|t ψ(y)dy.

15



This implies

∫

Rn

u(x)(−∆)
α
2 ψ(x)dx =

∫

Rn

(∫

Rn

uα∗(t)(y)

|y|t
1

|x− y|n−α
dy

)
φ(x)dx

for all φ ∈ C∞
0 (Rn). Therefore, u(x) =

∫
Rn

uα∗(t)(y)
|y|t

1
|x−y|n−α dy, namely, the

integral equation holds.

On the other hand, if the integral equation (3) i.e. u(x) =
∫
Rn

uα∗(t)(y)
|y|t

1
|x−y|n−α dy

holds, then by taking Fourier transform on both sides we get

û(ξ) = cn|ξ|−α
̂(

uα∗(t)(y)

|y|t
)

(ξ).

This implies that

|ξ|αû(ξ) = cn

̂(
uα∗(t)(y)

|y|t
)

(ξ).

Thus for any φ ∈ C∞
0 (Rn) we have

∫

Rn

(−∆)
α
2 uφ =

∫

Rn

(−∆)
α
4 u(−∆)

α
4 φ

= cn

∫

Rn

|ξ|αû(ξ)φ̂(ξ)dξ = cn

∫

Rn

̂(
uα∗(t)(y)

|y|t
)

(ξ)φ̂(ξ)dξ

= cn

∫

Rn

uα∗(t)(y)

|y|t φ(y)dy.

Therefore,

(−∆)
α
2 u =

uα∗(t)(y)

|y|t ,

namely u satisfies (4).

We conclude this section by giving another proof of the fact that (4)
implies (3) in the case of α = 2m, where m is a positive integer.

Proof. We argue as follows. By the regularity theorem in [ADN], u ∈
W 2m, s

loc (Rn) for some 1 < s < 2n
n+2m

. For any x ∈ Rn, we multiply both sides

of (4) by 1
|x−y|n−2m ψ(x− y). The cut-off function ψ(x− y) = η( |x−y|

R
). When

16



0 < r < 1, η(r) = 1, while η(r) = 0 when r > 2. Moreover 0 < η(i)(r) < 2 in
(0, 2) for i = 1, · · · , 2m. Then

∫

Rn

(−4)mu
ψ(x− y)

|x− y|n−2m
dy =

∫

Rn

u(2m)∗(t)−1 ψ(x− y)

|y|t|x− y|n−2m
dy.

Using integration by parts several times, we have
∫

Rn

u(−4)m(
1

|x− y|n−2m
)ψ + Σ2m

i=1Ci

∫

Rn

u|x− y|−n+iη(i)(
|x− y|

R
)R−i

=

∫

Rn

u(2m)∗(t)−1 1

|y|t
ψ(x− y)

|x− y|n−2m
,

where Ci is some constant independent of u(x). Since u(x) ∈ L
2n

n−2m , using
Hölder’s inequality for the second integration,
∫

Rn

u|x− y|−n+iη(i)R−i ≤ CiR
−i(

∫

Rn

|u| 2n
n−2m )

n−2m
2n (

∫

B2R\BR

(|x− y| 2n(i−n)
n+2m )

n+2m
2n

≤ CiR
−i(

∫ 2R

R

r
2n(i−n)
n+2m rn−1)

n+2m
2n → 0

as R →∞. Therefore,

u(x) =

∫

Rn

u(2m)∗(t)−1 1

|y|t
1

|x− y|n−2m
dy.
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