LSU Mathematics Courses
No student may receive more than nine semester hours of credit in mathematics courses numbered below 1550,
with the exception of students who are pursuing the elementary education degree and following the 12-hour sequence
specified in that curriculum. No student who has already received credit for a mathematics course numbered 1550 or
above may be registered in a mathematics course numbered below 1550, unless given special permission by the Department of Mathematics.
1021 College Algebra (3) Ge, F, S, Su
Prerequisites: Placement by department. Credit will not be given for both this course and MATH
1015 or
1023.
Solving equations and inequalities; function properties and graphs with transformations; inverse functions; linear, quadratic, polynomial, rational, exponential and logarithmic functions with applications; systems of equations.
More info»
1022 Plane Trigonometry (3) Ge, F, S, Su
Prerequisites: MATH
1021 or placement by department. Credit will not be given for both this course and MATH
1015 or
1023.
Trigonometric functions with applications; graphs with transformations; inverse functions; fundamental identities and angle formulas; solving equations; solving triangles with applications; polar coordinate system; vectors.
More info»
1023 College Algebra and Trigonometry (5) Ge, F, S
Prerequisites: Placement by department. Credit will not be given for both this course and MATH 1015,
1021, or
1022. This course fulfills 5 hrs. of the 6-hr. Gen. Ed. Analytical Reasoning requirement; a second Analytical Reasoning course will be required.
Function properties and graphs; inverse functions; linear, quadratic, polynomial, rational, exponential and logarithmic functions, with applications; systems of equations; partial fraction decomposition; conics; trigonometric functions and graphs; inverse trigonometric functions; fundamental identities and angle formulas; solving equations and triangles with applications; polar coordinate system; vectors.
More info»
1029 Introduction to Contemporary Mathematics (3) Ge, F, S, Su
Prerequisites: Primarily for students in liberal arts and social sciences.
Mathematical approaches to contemporary problems, handling of data and optimization using basic concepts from algebra, geometry and discrete mathematics.
More info»
- Textbook: Thinking Mathematically, 7E BLitzer by Blitzer (required)
- Notes: Text: Blitzer, THinking mathematically, 7e, 2019
18 wk-title-specific access code card : 978-0135903575
24-month title-specific access code card: 978-01345705095
Looseleaf +24 month title-specific access code and card bundle: 978-0135167458
Bound book + 24 month title-specific access code and card bundle : 978-0134708300
Dr. Julia Ledet is teaching for spring, 2020.
1100 The Nature of Mathematics (3) Ge, F, S, Su
Prerequisites: Not for science, engineering, or mathematics majors. For students who desire an exposure to mathematics as part of a liberal education.
Logic; the algebra of logic, computers, and number systems; networks and combinatorics; probability and statistics.
More info»
- Textbook: Thinking Mathematically, 7E BLitzer by Blitzer (optional)
- Notes: Math 1029-1100, Blitzer, Thinking mathematically, 7e, 2019.
18-wk title specific access code card:978-0135903575
24-month title specific access code card: 978-0134-705095
Looseleaf +24 month title-specific access code card bundle : 978-0135167458
Bound book +224 month title specific access code card bundle: 978-0134708300
Elizabeth Dougherty is teaching for spring, 2020.
1201 Number Sense and Open-Ended Problem Solving (3) F, S
Prerequisites: MATH
1021 and
1023. Primarily for students in the early childhood education PK-3 teacher certification curriculum or the elementary grades education curriculum.
Cardinality and integers; decimal representation and the number line; number sense; open ended problem solving strategies; expressions and equation solving; primes, factors, and proofs; ratio and proportion; written communication of mathematics.
More info»
- Textbook: Elementary Mathematics for Teachers by Scott Baldridge, Parker (required)
- Textbook: Primary Mathematics 4A (2003) by Cavendish (required)
- Textbook: Primary Mathematics 5A (2003) by Cavendish (required)
- Textbook: Primary Mathematics 5A (2003) by Cavendish (required)
- Textbook: Primary Mathematics 6A (2003) by Cavendish (required)
- Notes: Elizabeth Dougherty is teaching for spring, 2020.
1202 Geometry, Reasoning and Measurement (3) F, S
Prerequisites: MATH
1201. Primarily for students in the early childhood education PK-3 teacher certification curriculum or the elementary grades education curriculum.
Geometry and measurement in two and three dimensions; similarity; congruence; Pythagorean Theorem; written communication of mathematics.
More info»
- Textbook: Elementary Geometry for Teachers by Scott Baldridge, Parker (required)
- Textbook: Primary Mathematics 4A (2003) by Cavendish (required)
- Textbook: Primary Mathematics 5A (2003) by Cavendish (required)
- Textbook: Primary Mathematics 3B (2003) by Cavendish (required)
- Textbook: Primary Mathematics 5B (2003) by Cavendish (required)
- Notes: book 6: Primary Mathematics, 6B, ISBN 978-981-01-85152
book 7: new elementary mathematics textbook, 1, ISBN 978-981-271-411-4
These textbooks are all ordered from SingaporeMath.com
1431 Calculus with Business and Economic Applications (3) Ge, F, S, Su
Prerequisites: MATH
1021 or
1023. Credit will be given for only one of the following: MATH
1431 or
1550 or
1551. 3 hrs. lecture; 1 hr. lab.
Differential and integral calculus of algebraic, logarithmic, and exponential functions; applications to business and economics, such as maximum-minimum problems, marginal analysis, and exponential growth models.
More info»
1550 Analytic Geometry and Calculus I (5) Ge, F, S, Su
Limits, derivatives, and integrals of algebraic, exponential, logarithmic, and trigonometric functions, with applications.
More info»
- Textbook: Calculus, early transcendentals, 8th edition by James Stewart. (required) New adoption for math 1550 for fall, 2016. Enhanced web assign Printed Access card.
- Textbook: Briggs/Cochran Calculus: Early Transcendentals, 3E by Briggs/Cochran (recommended) math 1500, sec. 14 only. Selena Oswalt teaching, spring 2020
- Detailed course information
- Notes: On Web Assign website> This text ISBN Number has enhanced web assign printed access card.
Student solutions manual for stewart's single variable Calculus: early transcendentals, 8th edition.
ISBN 978-130-527-2422.
MATH 1550 sec. 15 ONLY will be using the mymathlab access card by Briggs and Cochran.
1551 HONORS: Analytic Geometry and Calculus I (5) Ge, F
Prerequisites: An appropriate ALEKS placement score. Credit will not be given for this course and Math
1431 or
1550.
Same as Math
1550, but with special honors emphasis for qualified students.
More info»
- Textbook: Calculus, early transcendentals, 8th edition by James Stewart. (required) The learning program: WebAssign has e-book access included.
- Notes: Note: Ebook: students can go to WebAssign website. There is a free trial for 14 days that every
student receives once they enter the course key their professor gives them. Once they enter the
key it gives the student the option to use it for 14 days or buy the ebook and homework option.
1552 Analytic Geometry and Calculus II (4) Ge, F, S, Su
Prerequisites: MATH
1550 or MATH
1551. This is a General Education Course. An honors course, MATH
1553 is also available. Credit will not be given for this course and MATH
1553 or
1554.
Techniques of integration, parametric equations, analytic geometry, polar coordinates, infinite series, vectors in low dimensions; introduction to differential equations and partial derivatives.
More info»
- Textbook: Calculus, early transcendentals, 8th edition by James Stewart. (required) This text used also in Math 1550, 2057, & in all sections of Math 1552 except as noted below. The learning program WebAssign has e-book access included.
- Textbook: Calculus: Early Transcendentals, 2nd edition, 2015 by Briggs/Cochran/Gillet (required) This text is equivalent to Stewart, & in spring 2015 is used only for section 17. Only the MyMathLab access code is required, & it contains the e-text.
- Detailed course information
1553 HONORS: Analytic Geometry and Calculus II (4) Ge, F, S
Prerequisites: Credit will not be given for this course and MATH
1552 or
1554.
Same as MATH
1552, with special honors emphasis for qualified students.
More info»
1554 Calculus II for Life Science Majors (4) Ge, F, S
Prerequisites: MATH
1550 or
1551. Credit will not be given for this course and either MATH
1552 or
1553. Does not meet the prerequisites for higher-level Math courses.
Designed for biological science majors. Techniques of integration, introduction to differential equations, stability of equilibrium points, elementary linear algebra, elements of multivariable calculus, systems of differential equations.
More info»
- Textbook: Calculus for Biology and Medicine, 3E by Neuhauser (required)
- Notes: Prof. C. Li will be teaching for spring 2016.
2020 Solving Discrete Problems (3) F, S
Topics selected from formal logic, set theory, counting, discrete probability, graph theory, and number theory.
Emphasis on reading and writing rigorous mathematics.
More info»
- Textbook: Discrete Mathematics and It Applications, 8th edition by Kenneth Rosen (required)
- Notes: Indranil Banerjee will be teaching for spring, 2020.
2025 Linear Algebra and Wavelets (3) F
Topics: Haar wavelets, multiresolution analysis, and applications to imaging and signal processing. Emphasis on reading and writing rigorous mathematical proofs through linear algebra and wavelet transforms.
More info»
- Textbook: Discrete Wavelet transformations: AN Elementary Approach with applications, 2nd edition by Patrick Van Fleet (recommended)
- Notes: Prior to 2019, course title was: "Integral Transforms and Their Applications."
Dr.Pete Wolenski is teaching for fall 2019
2030 Discrete Dynamical Systems (3) F, S
The mathematical topics covered are fundamental in mathematical analysis, and are chosen from the area of discrete dynamical systems. These topics include precise definitions of limits, continuity, and stability properties of fixed points and cycles. Quadratic maps and their bifurcations are studied in detail, and metric spaces are introduced as the natural abstraction to explore deeper properties of symbolic dynamics, chaos, and fractals.
2057 Multidimensional Calculus (3) F, S, Su
Prerequisites: MATH
1552 or
1553. An honors course, MATH
2058, is also available. Credit will not be given for this course and MATH
2058.
Three-dimensional analytic geometry, partial derivatives, multiple integrals.
More info»
2058 HONORS: Multidimensional Calculus (3) F
Prerequisites: Credit will not be given for both this course and MATH
2057.
Same as MATH
2057, with special honors emphasis for qualified students.
More info»
2060 Technology Lab (1) F, S
Prerequisites: Credit or concurrent enrollment in MATH
2057 or
2058. Students are encouraged to enroll in MATH
2057 (or
2058) and
2060 concurrently.
Use of computers for investigating, solving, and documenting mathematical problems; numerical, symbolic, and graphical manipulation of mathematical constructs discussed in MATH
1550,
1552, and
2057.
More info»
- Textbook: CalcLabs with Mathematica for Stewart's Multivariable calculus, 5th, but for 7th edition stewart by Hollis/stewart (required)
- Notes: Alexander Perlis will be teaching for spring, 2020.
2065 Elementary Differential Equations (3) F, S
Prerequisites: MATH
1552 or
1553. Credit will be given for only one of the following: MATH
2065,
2070, or
2090.
Ordinary differential equations; emphasis on solving linear differential equations.
More info»
- Textbook: Ordinary Differential Equations by Adkins, W. Davidson, M. (required)
- Detailed course information
- Notes: Prof. Phuc Cong Nguyen and Prof. Hongyu He will be teaching for fall 2019
2070 Mathematical Methods in Engineering (4)
Prerequisites: MATH
1552 or
1553. Credit will be given for only one of the following: MATH
2065,
2070,
2090.
Ordinary differential equations, Laplace transforms, linear algebra, and Fourier series; physical applications stressed.
More info»
- Textbook: Ordinary Differential Equations by Adkins, W. Davidson, M. (required)
- Detailed course information
- Notes: Prof. Jiuyu Zhu will be teaching for fall, 2019.
2085 Linear Algebra (3) F, S, Su
Prerequisites: MATH
1552 or
1553. Credit will not be given for both this course and MATH
2090.
Systems of linear equations, vector spaces, linear transformations, matrices, determinants.
More info»
- Textbook: Linear Algebra With Applications (Classic version)5th edition by Otto bretscher (required)
- Notes: Prof. blaise Bourdin is teaching for spring 2020.
2090 Elementary Differential Equations and Linear Algebra (4) F, S, Su
Prerequisites: MATH
1552 or
1553. Credit will not be given for both this course and MATH
2065,
2070, or
2085.
Introduction to first order differential equations, linear differential equations with constant coefficients, and systems of differential equations; vector spaces, linear transformations, matrices, determinants, linear dependence, bases, systems of equations, eigenvalues, eigenvectors, and Laplace transforms.
More info»
2203 Measurement: Proportional and Algebraic Reasoning (3) F, S
Prerequisites: Professional Practice I Block, 12 sem. hrs. of mathematics including MATH 1201 and MATH 1202, and concurrent enrollment in EDCI 3125.
Mathematics content course designed to be integrated in Praxis II with the principles and structures of mathematical reasoning applied to the grades 1-6 classroom. 2 hrs. lecture; 2 hrs. lab/field experience (as part of Professional Practice II Block).
Development of a connected, balanced view of mathematics; interrelationship of patterns, relations, and functions; applications of algebraic reasoning in mathematical situations and structures using contextual, numeric, graphic, and symbolic representations; written communication of mathematics.
More info»
- Textbook: Teaching School Mathematics: Algebra by Hung-Hsi Wu (optional)
- Notes: Michael Muffuletto will be teaching for fall, 2019.
3002 Mathematics Classroom Presentations (2) F, S
Prerequisites: BASC 2010 and 2011.
Current standards for middle and high school mathematics and the mathematics certification exam.
Students will prepare and present middle and/or high school mathematics lessons that incorporate this content and appropriate use of technology.
More info»
- Notes: Sharon Besson teaches this in fall 2019.
3003 Functions and Modeling (3)
Prerequisites: BASC 2011.
Using problem-based learning, technology, and exploring in depth relationships between various areas of mathematics, students strengthen mathematical understandings of core concepts taught at the secondary level. Connections between secondary and college mathematics are investigated. Various topics from new math standards for functions and statistics are included.
More info»
3050 Interest Theory (5) F, Y
Prerequisites: Math #1552 or #1553.
Measurement of interest (including accumulated and present value factors), annuities certain, yield rates, amortization schedules and sinking funds, bonds and related securities, derivative instruments, and hedging and investment strategies.
More info»
- Textbook: Interest Theory:Financial Mathematics and Deterministic Valuation (2nd edition), 2018 by J. Francis and C. Ruckman (required)
- Notes: First offered in fall 2019. Previously numbered Math 4050. Professor Cochran teaches this in fall 2019.
Other required course notes (from Society of Actuaries website):
FM-24-17 Using Duration and Convexity to Approximate Change in Present Value URL
FM-25-17 Interest Rate Swaps URL
FM-26-17 Determinants of Interest Rates
Dr. George Cochran will be teaching for fall 2019.
3355 Probability (3) F, S, Su
Prerequisites: MATH
2057 or
2058. Credit will not be given for this course and EE 3150.
Introduction to probability, emphasizing concrete problems and applications; random variables, expectation, conditional probability, law of large numbers, central limit theorem, stochastic processes.
More info»
3903 Methods of Problem Solving (2) F
Prerequisites: MATH
1552 or
1553, and MATH
2070,
2085, or
2090 or consent of department. Pass-fail grading. May be taken for a max. of 6 hrs. of credit when topics vary.
Instruction and practice in solving a wide variety of mathematical and logical problems as seen in the Putnam competition.
More info»
- Textbook: Putnam and Beyond, 2nd edition., 2017 by Razvan Gelca, Titu Andreescu (supplemental)
- Notes: Dr. Mahlburg teaches this in fall 2019, using own notes.
4019 Calculus Internship Capstone (2)
Prerequisites: MATH
3003.
Students will be mentored by a calculus instructor and will participate in the planning and instruction of a recitation section for a calculus course. Skills and topics for teaching Calculus AP will be included.
More info»
- Notes: Dr. Ameziane Harhad teaches this in fall 2019.
4020 Capstone Course (3) Grad, F, S
Prerequisites: Students should be within two semesters of completing the requirements for a mathematics major and must have completed a 4000-level mathematics course with a grade of C or better, or obtain permission of the department.
Provides opportunities for students to consolidate their mathematical knowledge, and to obtain a perspective on the meaning and significance of that knowledge. Course work will emphasize communication skills, including reading, writing, and speaking mathematics.
More info»
- Textbook: Linear Algebra and Learning from Data. by Gil Strang (required)
- Notes: Dr. Pete Wolenski will be teaching for spring 2020. there are also lecture videos on the text on You Tube.
4023 Applied Algebra (3) Grad, F, S, Su
Prerequisites: MATH
2085 or
2090. Credit will not be given for both this course and MATH
4200.
Finite algebraic structures relevant to computers: groups, graphs, groups and computer design, group codes, semigroups, finite-state machines.
More info»
- Textbook: Modern Algebra and Discrete Structures (1991) by Robert Lax (required)
- Notes: Prof. Dirk Vertigan will be teaching for spring, 2020
4024 Mathematical Models (3) Grad, V
Prerequisites: MATH
1552 or
1553, and credit or registration in MATH
2085 or
2090.
Construction, development, and study of mathematical models for real situations; basic examples, model construction, Markov chain models, models for linear optimization, selected case studies.
More info»
4025 Optimization Theory and Applications (3) Grad, S
Prerequisites: MATH
2057 or
2058, and credit or registration in MATH
2085 or
2090.
Basic methods and techniques for solving optimization problems; n-dimensional geometry and convex sets; classical and search optimization of functions of one and several variables; linear, nonlinear, and integer programming.
More info»
- Textbook: An Introduction to Optimization, 4th edition, 2017. by Chong and Zak (required)
- Notes: Prof.Guoli Ding will be teaching for spring, 2020.
4027 Differential Equations (3) Grad, S
Ordinary differential equations, with attention to theory.
More info»
4031 Advanced Calculus I (3) Grad, F, S
Completeness of the real line, Bolzano-Weierstrass theorem and Heine-Borel theorem; continuous functions including uniform convergence and completeness of C[a,b]; Riemann integration and the Darboux Criterion.
More info»
- Textbook: Advanced Calculus: An Introduction to Linear Analysis, 1st Edition (2008) by Richardson (required)
- Notes: Prof. Leonard Richardson will be teaching for spring, 2020.
4032 Advanced Calculus II (3) Grad, S
Prerequisites: MATH
4031.
Derivative, including uniform convergence, the mean value theorem, and Taylor's Theorem; absolute and uniform convergence of series, completeness of sequence spaces, dual spaces; real analytic functions; functions of bounded variation, the Stieltjes integral, and the dual of C[a,b].
More info»
- Textbook: Advanced Calculus: An Introduction to Linear Analysis, 1st Edition (2008) by Richardson (required)
- Notes: Prof. Milen Yakinov teaching spring 2020.
4035 Advanced Calculus of Several Variables (3) Grad, F
Prerequisites: MATH
4031.
Topology of n-dimensional space, differential calculus in n-dimensional space, inverse and implicit function theorems.
More info»
4038 Mathematical Methods in Engineering (3) Grad, F, S, Su
Vector analysis; solution of partial differential equations by the method of separation of variables; introduction to orthogonal functions including Bessel functions.
More info»
- Textbook: Advanced Engineering Mathematics, 6th edition by Dennis G. ZIll (required) Used beginning Fall 2013.
- Detailed course information
- Notes: Prof. Leonard Richardson will be teaching for fall 2019
4039 Introduction to Topology (3) Grad, S, O
Prerequisites: MATH
2057 or
2058.
(In the 2015-2016 and earlier catalogs, the prereq for this course was Math 4031.)
Examples and classification of two-dimensional manifolds, covering spaces, the Brouwer theorem, and other selected topics.
More info»
- Textbook: Basic Topology by M.A. Armstrong (required)
- Notes: Prof. Andrew Zimmer will be teaching for spring, 2020.
4040 Short-term Actuarial Mathematics I (3) Grad, F, O
Prerequisites: MATH
3355.
Actuarial models for insurance and annuities. Severity-of-loss and frequency-of-loss models, aggregate models, risk models, empirical estimation.
More info»
- Notes: First offered fall 2019.
Prof. George Cochran will be teaching for fall, 2019
4041 Short-term Actuarial Mathematics II (3) Grad, S, E
Prerequisites: MATH
4040 and one of MATH
4056, EXST 3201, or EXST 4050.
Actuarial models for insurance and annuities. Statistical estimation procedures, credibility theory, and pricing and reserving.
More info»
- Notes: First offered spring 2020.
4045 Long-term Actuarial Mathematics I (3) Grad, F, E
Survival models and their estimation. Distribution of the time-to-death random variable and its significance for insurance and annuity functions, net premiums, and reserves.
More info»
- Notes: First offered fall 2020.
4046 Long-term Actuarial Mathematics II (3) Grad, S, O
Prerequisites: MATH
4045 and one of MATH
4056, EXST 3201, or EXST 4050.
Parametric survival models with multiple-life states; life insurance and annuity premium calculations; reserving and profit measures; participating insurances, pension plans, and retirement benefits.
More info»
- Notes: First offered spring 2021.
4050 Interest Theory (5) Grad, F
Prerequisites: MATH
3355.
Measurement of interest (including accumulated and present value factors), annuities certain, yield rates, amortization schedules and sinking funds, bonds and related securities, derivative instruments, and hedging and investment strategies.
Last offered fall 2018; replaced by Math 3050 beginning fall 2019.
More info»
- Textbook: Financial Mathematics: A Practical Guide for Actuaries and Other Business Professionals, 2nd Edition (2005) by Joe Francis, Chris Ruckman (required)
- Notes: Other required course notes (from Society of Actuaries website):
FM-24-17 Using Duration and Convexity to Approximate Change in Present Value URL
FM-25-17 Interest Rate Swaps URL
FM-26-17 Determinants of Interest Rates
4056 Mathematical Statistics (3) Grad, F
Prerequisites: MATH
3355.
Statistical inference including hypothesis testing, confidence intervals, estimators, and goodness-of-fit.
More info»
- Textbook: Mathematical Statistics and Data Analysis, 3rd Edition (2007) by John Rice (recommended)
- Notes: In the 2016-2017, 2017-2018, 2018-2019 and 2020-2021 catalogs, this course carried or will carry 4 hours of credit, and covered or will cover time series.
Dr. Sundar will be teaching for fall, 2019.
4058 Elementary Stochastic Processes (3) Grad, S
Prerequisites: Math
3355 and either Math
2085 or Math
2090 .
Markov chains, Poisson process, and Brownian motion.
More info»
- Textbook: A first look at Stochastic Processes by Jeffrey Rosenthal (required)
- Notes: Spring 2020, Teaching either Dr. He or Dr. Cochran
4064 Numerical Linear Algebra (3) Grad, F, Y
Gaussian elimination and LU factorization, tridiagonal systems, vector and matrix norms,
singular value decomposition, condition number, least squares problem, QR factorization,
iterative methods, power methods for eigenvalues and eigenvectors, applications.
More info»
- Notes: Prof. Hongchao Zhang will be teaching for fall, 2019. Will use own notes.
4065 Numerical Analysis (3) Grad, F
An introduction to numerical methods in basic analysis, including root-finding, polynomial interpolation, numerical integration and differentiation, splines and wavelets.
More info»
- Notes: Prof. Xiaoliang Wan will be teaching for fall, 2019.
Suggested readings but not required: Numerical Analysis 10th edition, burden and faires, ISBN 978-130-5253667.
Cengage.
4066 Numerical Differential Equations (3) Grad, S
Numerical solutions to initial value problems and boundary value problems for ordinary and partial differential equations.
More info»
- Notes: Prof. S. Walker will be teaching for spring, 2020. Will use own notes.
4153 Finite Dimensional Vector Spaces (3) Grad, S
Vector spaces, linear transformations, determinants, eigenvalues and eigenvectors, and topics such as inner product space and canonical forms.
More info»
- Textbook: Abstract Linear Algebra by Morton L. Curtis (required)
- Notes: Prof. Rick Litherland will teach for spring, 2020.
4158 Foundations of Mathematics (3) Grad, V
Prerequisites: MATH
2020,
2025, or
2030, or consent of instructor.
Rigorous development of the real numbers, sets, relations, product spaces, order and cardinality.
More info»
- Textbook: The Foundations of Mathematics by Ian Stewart and David Tall (required)
4171 Introduction to Graph Theory (3) Grad, S
Fundamental concepts of undirected and directed graphs, trees, connectivity and traversability, planarity, colorability, network flows, matching theory and applications.
More info»
- Textbook: Introduction to Graph THeory (Classic Version) , 2nd edition. (2018) by Douglas West (required)
- Notes: Prof. Dirk Vertigan will be teaching for spring, 2020.
4172 Combinatorics (3) Grad, F
Topics selected from permutations and combinations, generating functions, principle of inclusion and exclusion, configurations and designs, matching theory, existence problems, applications.
More info»
4181 Elementary Number Theory (3) Grad, F
Divisibility, Euclidean algorithm, prime numbers, congruences, and topics such as Chinese remainder theorem and sums of integral squares.
More info»
- Textbook: Elementary Introduction to Number theory, 3rd edition. by Calvin T. Long (required)
- Notes: Prof. Bill Adkins will be teaching for fall, 2019
4200 Abstract Algebra I (3) Grad, F
Prerequisites: MATH
2085 or
2090. Credit will not be given for both this course and MATH
4023.
Elementary properties of sets, relations, mappings, integers; groups, subgroups, normal subgroups, quotient groups, homomorphisms, automorphisms, and permutation groups; elementary properties of rings.
More info»
- Textbook: Introduction to Abstract Algebra, 4th edition by Nicholson, Keith (required)
- Notes: Prof. Stephen Shipman will be teaching for fall 2019.
4201 Abstract Algebra II (3) Grad, S, E
Prerequisites: MATH
4200.
Ideals in rings, factorization in polynomial rings, unique factorization and Euclidean domains, field extensions, splitting fields, finite fields, Galois theory.
More info»
4325 Fourier Transforms (3) Grad, V
Prerequisites: MATH
1552 or
1553, and one of the following: MATH
2057,
2058,
2065,
2070,
2085,
2090. For students majoring in mathematics, physics, or engineering.
Fourier analysis on the real line, the integers, and finite cyclic groups; the fast Fourier transform; generalized functions; attention to modern applications and computational methods.
More info»
- Textbook: A First Course in Fourier Analysis, 2nd Edition (2008) by David Krammler (required)
- Notes: Spring 2020.
4340 Partial Differential Equations (3) Grad, F
Prerequisites: Math
2057 or Math
2058, and one of the following: (1) Math
2070, (2) Math
2090, or (3) both Math
2065 and
2085.
First-order partial differential equations and systems, canonical second-order linear equations, Green's functions, method of characteristics, properties of solutions, and applications.
More info»
- Textbook: Partial Differential Equations for Scientists and Engineers (1993) by Farlow (required)
- Notes: Prof. Blaise Bourdin will be teaching for fall, 2019
4345 Special Functions (3) Grad, V
Prerequisites: MATH
2057 or MATH
2058, and one of the following: (1) Math
2070, (2) Math
2090, or (3) Math
2065 and
2085.
Sturm-Liouville problems, orthogonal functions (Bessel, Laguerre, Legendre, Hermite), orthogonal expansions including Fourier series, recurrence relations and generating functions, gamma and beta functions, Chebychev polynomials, and other topics.
More info»
- Textbook: Special Functions for Scientists and engineers by W.W. bell (required)
- Notes: Karl Mahlberg teaches this in fall 2019.
4700 History of Mathematics (3) Grad, S
Prerequisites: Math
2057 or
2058; Math
2020; and Math
2085 or
2090; students entering the course should have a firm sense of what constitutes a proof.
This course will have substantial mathematical content; topics such as early Greek mathematics, from Euclid to Archimedes; algebra and number theory from Diophantus to the present; the calculus of Newton and Leibniz; the renewed emphasis on rigor and axiomatic foundations in the 19th and 20th centuries; interactions of mathematics with technology and the natural sciences; biographies of significant mathematicians.
More info»
- Textbook: MAth Through the Ages: A Gentle History for Teachers and Others, 2nd edition, 2015 by William P. Berlinghoff and fernando Q. Gouvea (required)
- Notes: Prof. Ahma Lisan teaches this in spring 2020.
4997 Vertically Integrated Research (3) Grad, F, S, Su
Prerequisites: May be taken for a maximum of 24 hours with consent of instructor.
This course is intended to provide opportunities for students to learn about mathematical research in a vertically integrated learning and research community. Undergraduate students, graduate students, post-doctoral researchers and faculty may work together as a unit to learn and create new mathematics. Possible formats include group reading and exposition, group research projects, and written and oral presentations. Undergraduate students may have a research capstone experience or write an honors thesis as part of this course.
More info»
- Textbook: Theory and Applications by P. Abramenko and K. Brown (required) math 4997, sec. 1, taught by Sage and Achar
- Notes: For textbooks and other detailed descriptions of the various sections of Math 4997 for each semester, see https://www.math.lsu.edu/grad/cur.grad.cour (where graduate-level courses in Math for each semester are described).
4997 - 1 , Sage and Achar
4997 - 2 , Vela-Vick and Wong - no text.
Math 4997, sec. 1, taught by Dan Sage.
4999 Selected Readings in Mathematics (1–3) Grad
Prerequisites: Consent of department. May be taken for max. of 9 sem. hrs. credit.
6301 Implementing Curriculum Standards for Mathematics in the Elementary Grades (1–3) Grad, V
Prerequisites: May be repeated for up to 9 sem. hrs. of credit if department certifies that topics do not overlap. This course is intended primarily for participants in teacher-training programs.
Mathematics selected from nationally recognized curriculum standards for the elementary grades, treated with attention to depth and the specific needs of teachers.
6302 Implementing Curriculum Standards for Mathematics in the Middle Grades (1–3) Grad, V
Prerequisites: May be repeated for up to 9 sem. hrs. of credit if department certifies that topics do not overlap. This course is intended primarily for participants in teacher-training programs.
Mathematics selected from nationally recognized curriculum standards for the middle grades, treated with attention to depth and the specific needs of teachers.
More info»
- Notes: Jim Madden will be teaching for fall, 2018.
6303 Implementing Curriculum Standards for Mathematics in High School (1–3) Grad, V
Prerequisites: May be repeated for up to 9 sem. hrs. of credit if department certifies that topics do not overlap. This course is intended primarily for participants in teacher-training programs.
Mathematics selected from nationally recognized curriculum standards for high school, treated with attention to depth and the specific needs of teachers.
6893 Seminar in Mathematics for Secondary Teachers (1–3) Grad
Prerequisites: Consent of department. May be repeated for a max. of 6 sem. hrs. when topics vary.
Topics of interest to teachers of secondary school mathematics.
7001 Communicating Math I (1) Grad, F
Prerequisites: consent of department.
Practical training in the teaching of undergraduate mathematics; how to write mathematics for publication; other issues relating to mathematical exposition.
More info»
- Textbook: How to Teach Mathematics, 2nd Edition (2000) by Steven G. Krantz (strongly recommended)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7002 Communicating Mathematics II (1) Grad, S
Prerequisites: Consent of department.
Practical training in the written and oral presentation of mathematical papers; the teaching of mathematics and the uses of technology in the mathematics classroom.
More info»
- Notes: Texts are recommended but not required. For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7210 Algebra I (3) Grad, F
Prerequisites: MATH
4200 or equivalent.
Groups: Group actions and Sylow Theorems, finitely generated abelian groups; rings and modules: PIDs, UFDs, finitely generated modules over a PID, applications to Jordan canonical form, exact sequences.
More info»
- Textbook: Abstract Algebra, 3rd Edition (2003) by Dummit, Foote (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7211 Algebra II (3) Grad, S
Prerequisites: MATH
7210 or equivalent.
Fields: algebraic, transcendental, normal, separable field extensions; Galois theory, simple and semisimple algebras, Wedderburn theorem, group representations, Maschke’s theorem, multilinear algebra.
More info»
- Textbook: Abstract Algebra, 3rd Edition (2003) by Dummit, Foote (required) Year published, 2006
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
.
7220 Commutative Algebra (3) Grad
Commutative rings and modules, prime ideals, localization, noetherian rings, primary decomposition,
integral extensions and Noether normalization, the Nullstellensatz, dimension, flatness, graded rings, Hilbert polynomial,
valuations, regular rings, homological dimension, depth, completion, Cohen-Macaulay modules.
More info»
- Textbook: Introduction to Commutative Algebra, Student Economy Edition by Michael Atiyah (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Dr. Bill Hoffman will be teaching for spring, 2018
7230 Topics in Number Theory (3) Grad
Prerequisites: Math
7211. May be repeated for credit with consent of department when topics vary for a max. of 9 credit hrs.
Topics
in number theory, such as algebraic integers, ideal class group, Galois theory of prime ideals, cyclotomic fields, class field
theory, Gauss sums, quadratic fields, local fields, elliptic curves, L-functions and Dirichlet series, modular forms, Dirichlet's
theorem and the Prime Number theorem, Diophantine equations, Circle method.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Please refer to: www.math.lsu.edu graduate courses for information: Class Field Theory by Nancy Childress, Springer. Available for download.
7240 Topics in Algebraic Geometry (3) Grad
Prerequisites: Math
7211. May be repeated for credit with consent of department when topics vary for a max. of 9 credit hrs.
Topics in algebraic geometry, such as affine and projective varieties, morphisms and rational mappings, nonsingular varieties, sheaves and schemes, sheaf cohomology, algebraic curves and surfaces, elliptic curves, toric varieties, real algebraic geometry.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Riley Casper will be teaching for fall 2018.
Dan Sage will be teaching, spring 2017
7250 Representation Theory (3) Grad
Prerequisites: Math
7211.
Representations of finite groups, group algebras, character theory, induced representations, Frobenius
reciprocity, Lie algebras and their structure theory, classification of semisimple Lie algebras, universal enveloping algebras
and the PBW theorem, highest weight representations, Verma modules, and finite-dimensional representations.
More info»
- Textbook: Complex Analysis in One Variable (2001) by R. Narashimham, Nievergelt (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Rick Estrada will be teaching for fall, 2016..
7260 Homological Algebra (3) Grad
Prerequisites: Math
7211.
Modules over a ring, projective and injective modules and resolutions, abelian categories, functors and
derived functors, Tor and Ext, homological dimension of rings and modules, spectral sequences, and derived categories.
More info»
- Textbook: Methods of Homological Algebra, 2nd edition by Gelfand and Manin, 2003 (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Profs. Achar and Sage will be teaching for fall, 2017.
7280 Seminar in Commutative Algebra (1–3) Grad, V
Prerequisites: Consent of department. May be repeated for credit with consent of department.
Advanced topics such as commutative rings, homological algebra, algebraic curves, or algebraic geometry.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Math 7280(1) Achar will use own notes.
7290 Seminar in Algebra and Number Theory (1–3) Grad, V
Prerequisites: Consent of department. May be repeated for credit with consent of department.
Advanced topics such as algebraic number theory, algebraic semigroups, quadratic forms, or algebraic K-theory.
More info»
- Textbook: Quantum Invariants of Knots and 3-Manifolds by Vladimir Tkuraev (required) (only for Math 7290, section 1).
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edud/cur.grad.cour.
Prof. Richard Ng will be teaching for spring, 2017.
7330 Functional Analysis (3) Grad, V
Prerequisites: MATH
7311 or equivalent.
Banach spaces and their generalizations; Baire category, Banach-Steinhaus, open mapping, closed graph, and Hahn-Banach theorems; duality in Banach spaces, weak topologies; other topics such as commutative Banach algebras, spectral theory, distributions, and Fourier transforms.
More info»
- Textbook: Banach Algebra Technique in Operator Theory by Ronald Douglas (strongly recommended)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour
7350 Complex Analysis (3) Grad, V
Prerequisites: MATH
7311.
Theory of holomorphic functions of one complex variable; path integrals, power series, singularities, mapping properties, normal families, other topics.
More info»
- Textbook: Complex Analysis in One Variable (2001) by R. Narashimham, Nievergelt (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Rick Estrada is teaching for fall, 2016.
7360 Probability Theory (3) Grad, F
Prerequisites: MATH
7311 or equivalent.
Probability spaces, random variables and expectations, independence, convergence concepts, laws of large numbers, convergence of series, law of iterated logarithm, characteristic functions, central limit theorem, limiting distributions, martingales.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Prof. Ganguly will be teaching for fall, 2017. Will use own notes.
7370 Lie Groups and Representation Theory (3) Grad, V
Lie groups, Lie algebras, subgroups, homomorphisms, the exponential map. Also topics in finite and infinite dimensional representation theory.
More info»
- Textbook: Nilpotent Orbits in Semisimple Lie Algebras by David Collingwood and William McGovern (recommended)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Professor He will be teaching for spring, 2017.
7375 Wavelets (3) Grad, S
Prerequisites: MATH
7311 or equivalent.
Fourier series; Fourier transform; windowed Fourier transform or short-time Fourier transform; the continuous wavelet transform; discrete wavelet transform; multiresolution analysis; construction of wavelets.
More info»
- Textbook: introduction to fourier analysis and wavelets by mark a. pinsky (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour
Professor Nguyen will be teaching for spring , 2020
7384 Topics in the Mathematics of Materials Science (3) Grad, V
Prerequisites: Consent of department. May be repeated for credit with consent of department for a max. of 9 credit hrs.
Advanced topics in the mathematics of material science, including mathematical techniques for the design of optimal structural materials, solution of problems in fracture mechanics, design of photonic band gap materials, and solution of basic problems in the theory of superconductivity.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour. Prof. Stephen Shipman will be teaching for fall, 2018. Will use own notes.
7386 Theory of Partial Differential Equations (3) Grad, V
Prerequisites: Math
7330.
Sobolev spaces. Theory of second order scalar elliptic equations: existence, uniqueness and regularity. Additional topics such as: Direct methods of the calculus of variations, parabolic equations, eigenvalue problems.
More info»
- Textbook: Partial Differential Equations (2002)reprint by L. C. Evans (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7400 Combinatorial Theory (3) Grad
Problems of existence and enumeration in the study of arrangements of elements into sets; combinations and permutations; other topics such as generating functions, recurrence relations, inclusion-exclusion, Polya’s theorem, graphs and digraphs, combinatorial designs, incidence matrices, partially ordered sets, matroids, finite geometries, Latin squares, difference sets, matching theory.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7410 Graph Theory (3) Grad, S
Prerequisites: MATH
2085 and MATH
4039; or equivalent.
Matchings and coverings, connectivity, planar graphs, colorings, flows, Hamilton graphs, Ramsey theory, topological graph theory, graph minors.
More info»
- Textbook: Graph Theory, (2017 edition) by Reinhard Diestel (strongly recommended)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour. Bogdan Oporowski will be teaching for spring 2018.
7490 Seminar in Combinatorics, Graph Theory, and Discrete Structures (1–3) Grad, V
Prerequisites: Consent of department. May be repeated for credit with consent of department.
Advanced topics such as combinatorics, graph theory, automata theory, or optimization.
More info»
- Textbook: Matroid Theory, 2nd edition, 2011 by James Oxley (optional)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Prerequisites: MATH
2057 or equivalent.
Basic notions of general topology, with emphasis on Euclidean and metric spaces, continuous and differentiable functions, inverse function theorem and its consequences. (This is the catalog description only: Be sure to compare with the current syllabus which includes the fundamental group.)
More info»
- Textbook: Topology, 2nd Edition (2000) by Munkres (optional)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Prof. Dasbach will be teaching for fall, 2019.
7512 Topology II (3) Grad
Prerequisites: MATH
7510.
Theory of the fundamental group and covering spaces including the Seifert-Van Kampen theorem; universal covering space; classification of covering spaces; selected areas from algebraic or general topology.
More info»
- Textbook: Algebraic Topology by Allan Hatcher (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
Here is a link to the website for a copy of the Text.
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
Dr. Vela-Vick will be teaching for spring, 2020.
7550 Differential Geometry (3) Grad, S
Prerequisites: MATH
7210 and
7510; or equivalent.
Manifolds, vector fields, vector bundles, transversality, Riemannian geometry, other topics.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
.
Shea Vela-Vick will be teaching for spring, 2017.
7590 Seminar in Geometry and Algebraic Topology (1–3) Grad, V
Prerequisites: Consent of department. May be repeated for credit with consent of department.
Advanced topics such as advanced algebraic topology, transformation groups, surgery theory, sheaf theory, or fiber bundles.
More info»
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7710 Advanced Numerical Linear Algebra (3) Grad, S
Prerequisites: MATH
4032 or equivalent; MATH
4153 or equivalent.
Gaussian elimination: LU and Cholesky factorizations; Least squares problem: QR factorization and Householder algorithm, backward stability, singular value decomposition and conditioning; Iterative methods: Jacobi, Gauss-Seidel and conjugate gradient; Eigenproblems: power methods and QR algorithm.
More info»
- Textbook: Fundamentals of Matrix Computations, 3rd by David S. Watkins (required)
- Notes: For detailed, semester-by-semester descriptions of 7000-level math courses, see https://www.math.lsu.edu/grad/cur.grad.cour.
7999 Selected Readings in Mathematics (1–3) Grad
Prerequisites: Consent of department. May be repeated for credit with consent of department.
8000 Thesis Research (1–12) Grad
"S"/"U" grading.
9000 Dissertation Research (1–12) Grad
"S"/"U" grading.