Calendar

Time interval: Events:

Tuesday, October 21, 2025

Posted September 2, 2025

Algebra and Number Theory Seminar Questions or comments?

2:00 pm Lockett 233 or click here to attend on Zoom

Guanyu Li, Cornell University
Derived Commuting Schemes, Representation Homology, and Cohomology of Lie Algebras

The commuting schemes of an algebraic group or a Lie algebra play important roles in many areas of mathematics. They can be viewed as special cases of representation schemes, which are often highly singular. Derived algebraic geometry provides tools to remedy the deficiency. In particular, the derived representation scheme, together with its associated algebraic invariant known as representation homology, offers deeper insights into the structure of representation schemes. While the representation homology of reductive groups and reductive Lie algebras has been studied in the literature, it is natural to ask about the behavior of these objects and their relationships in the non-reductive setting. In this talk, I will discuss the derived commuting scheme of a maximal unipotent subgroup of a semisimple group scheme, as well as the derived commuting scheme of its Lie algebra. First, the higher structure of the derived commuting scheme detects whether the underlying commuting scheme is a complete intersection. Unlike the reductive case, the derived commuting scheme of a unipotent subgroup is equivalent to that of its Lie algebra. Using an analogue of the trace map, most of the homology classes can be explained in terms of the classical cohomology of a maximal nilpotent Lie algebra, described via the root system of the semisimple Lie algebra. This could be interpreted that the singularities of the commuting scheme of a maximal nilpotent subalgebra are largely determined by root system data. If time permits, I will also discuss a possible nilpotent analogue of the Macdonald identity, together with an interpretation in terms of representation homology.

Tuesday, October 28, 2025

Posted September 9, 2025

Algebra and Number Theory Seminar Questions or comments?

2:00 pm – 3:00 pm Lockett 233 or click here to attend on Zoom

Kalani Thalagoda, Tulane University
A summation formula for Hurwitz class numbers

The Hurwitz class numbers, $H(n)$, count ${\rm SL}(2,\mathbb{Z})$-classes of binary quadratic forms inversely weighted by stabilizer size. They are famously connected to the sum of three squares problem and to class numbers of imaginary quadratic fields. The work of Zagier in 1975 showed that their generating functions are related to a weight $3/2$ Harmonic Maass form. In this talk, I will discuss a summation formula for mock modular forms of moderate growth, with an emphasis on its application to Hurwitz class numbers. This is joint work with Olivia Beckwith, Nicholas Diamantis, Rajat Gupta, and Larry Rolen.