
Links:
Math Department
LSU Home Page
Am. Math Soc.
Math. Assoc. Am.
Nat. Sci. Found.
Siblinks:
Barbara
Michael
Patrick
Art
Birds



Topics in Material Science: Spectral theory in wave dynamics, from classical theory to open problems
Math 7384
Louisiana State University
Spring Semester, 2017
Prof. Stephen Shipman
Place: Lockett 111
Time: 1:302:50 Tuesday and Thursday
Office: Room 314 of Lockett Hall
Telephone: 225/5781674
Email: shipman@math.lsu.edu
Office Hours: By appointment
Course Description
Spectral theory of selfadjoint and normal operators underlies the dynamics of linear waves in classical and quantum physics. In fact, the mathematical theory is largely driven by physics. This is a huge and varied field, and I will choose the direction, flavor, and topics based on my research activity and tastes.
The material will come from my notes and from various books and articles in the literature.
Prerequisite
The prerequisites are real and complex analysis. Spectral theory and some PDEs will also be useful but will be introduced as needed.
Proposed Course Topics
 Spectral theorem and concrete realizations of it
 Unitary representations and Fourier transforms for symmetry groups of a physical structure
 Connection to complex analysis and moment problems
 Spectral theory in wave dynamics
 Operators for wave dynamics that commute with symmetry groups
 Analysis of operator resolvents
 Scattering of waves by objects: modified Fourier modes caused by local perturbations
 Resonance
 Limiting amplitude principle and limiting absorption principle
 Some relatively classical examples
 Bound states and eigenvalues, symmetryprotected spectrally embedded eigenvalues
 Resonance
 Coercivity and compactness
 The Fermi algebraic surface for periodic media, reducibility, relation to embedded eigenvalues
 Current research and open problems
 "Negativeindex" materials
 Nonsymmetryprotected embedded eigenvalues
 Topologically protected eigenstates
 Symmetries of Euclidean spacethe wallpaper groups and the Bieberbach groups
 Nonlinear scattering problems
Literature
We will not use any one source as a text book. My lectures will draw from my notes and several references.
There is a bibliography of relevant works below, with links to some PDF files of excerpts.
Assignments
Enrolled students will present a special topic or problem to the class. There will be lots of problems to solve, of course, but no required submission of assignments.
Evaluation
Evaluation of performance in the course is based on the presentation.
17A7384_Notes1
Lecture Notes and Problem Sets
Notes 1: Introduction
Notes 2: Motivation: The spectral theorem in finite dimension
Notes 3: Integral representations of analytic functions
Notes 4: Unbounded selfadjoint operators in Hilbert space
Notes 5: Spectral theorem for the resolvent of a selfadjoint operator
Notes 6: Spectral theory and Fourier analysis
Notes 7: Symmetry, Fourier analysis, and spectral theory
Notes 8: The Floquet transform for discrete translation Groups
Notes 9: Periodic operators
Notes 10: Local perturbation and modified Fourier transform
Appendix: RiemannStieljes integral and Helly theorems
Bibliography

Peter Kuchment, An Overview of Periodic Elliptic Operators,
Bulletin of the AMS, 2016.

My Notes on Resonance 2014.

Peter Kuchment, The Mathematics of Photonic Crystals, Chapter 7 in Mathematical Modeling in Optical Science, Vol. 22 of Frontiers in Applied Mathematics, SIAM 2001.

David Bindel, Resonance Sensitivity for Schrödinger, Notes, 2006.

David Bindel and Maciej Zworski, Theory and Computation of Resonances in 1D Scattering (website).

Maciej Zworski, Resonances in Physics and Geometry, Notices of the AMS, 1999.

Maciej Zworski, Mathematical Theory of Scattering Resonances Lecture notes, Version 0.1, 2016.

Maciej Zworski Mathematical Study of Scattering Resonances 2016.

Michael Reed and Barry Simon,
Methods of Modern Mathematics:
Vol. I Functional Analysis,
Vol. II Fourier Analysis and SelfAdjointness,
Vol. III Scattering Theory,
Vol. IV Analysis of Operators,
excerpts from Vol. I (spectral theorem),
Vol. II (selfadjoint extensions),
Academic Press, 1980.

Stephen P. Shipman and Aaron T. Welters,
Resonant electromagnetic scattering in anisotropic layered media,
J. Math. Phys. 54(10) 103511140 (2013).
pdf

N. I. Akhiezer and I. M. Glazman,
Theory of Linear Operators in Hilbert Space,
Dover, 1993, replication of the edition of F. Ungar Publishing, NY, 1961, 1963.

A. N. Kolmogorov and S. V. Fomin,
Introductory Real Analysis, §36: The Stieljes integral, 1968 (translation by Silverman, Dover 1975).

Gerald B. Folland,
Introduction to Partial Differential Equations,
Second Edition, Princeton University Press, 1995.
Excerpt: Chapter 0.
